Properties

Label 2.2e2_17e2_19.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 17^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$21964= 2^{2} \cdot 17^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 24 x^{4} - 35 x^{3} + 248 x^{2} - 475 x + 1653 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 21\cdot 29 + 4\cdot 29^{2} + 27\cdot 29^{4} + 24\cdot 29^{5} + 13\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 9 + \left(22 a + 28\right)\cdot 29 + \left(27 a + 19\right)\cdot 29^{2} + \left(18 a + 20\right)\cdot 29^{3} + \left(9 a + 17\right)\cdot 29^{4} + \left(2 a + 6\right)\cdot 29^{5} + \left(25 a + 7\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 4 + \left(22 a + 5\right)\cdot 29 + 22 a\cdot 29^{2} + \left(5 a + 14\right)\cdot 29^{3} + \left(13 a + 17\right)\cdot 29^{4} + \left(20 a + 11\right)\cdot 29^{5} + \left(22 a + 26\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 26 + 2\cdot 29 + 8\cdot 29^{2} + 2\cdot 29^{3} + 16\cdot 29^{4} + 21\cdot 29^{5} + 21\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 27 + \left(6 a + 9\right)\cdot 29 + \left(6 a + 4\right)\cdot 29^{2} + \left(23 a + 20\right)\cdot 29^{3} + \left(15 a + 19\right)\cdot 29^{4} + \left(8 a + 13\right)\cdot 29^{5} + \left(6 a + 3\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 24 + \left(6 a + 19\right)\cdot 29 + \left(a + 20\right)\cdot 29^{2} + 10 a\cdot 29^{3} + \left(19 a + 18\right)\cdot 29^{4} + \left(26 a + 8\right)\cdot 29^{5} + \left(3 a + 14\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.