Properties

Label 2.2e2_17e2.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{2} \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$1156= 2^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 5 x^{6} + 9 x^{5} - 26 x^{4} + 18 x^{3} + 20 x^{2} - 24 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 211\cdot 229 + 126\cdot 229^{2} + 52\cdot 229^{3} + 123\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 85 + 35\cdot 229 + 90\cdot 229^{2} + 205\cdot 229^{3} + 6\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 150 + 57\cdot 229 + 188\cdot 229^{2} + 58\cdot 229^{3} + 201\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 153 + 153\cdot 229 + 8\cdot 229^{2} + 180\cdot 229^{3} + 124\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 171 + 119\cdot 229 + 103\cdot 229^{2} + 173\cdot 229^{3} + 64\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 178 + 120\cdot 229 + 200\cdot 229^{2} + 27\cdot 229^{3} + 111\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 194 + 89\cdot 229 + 32\cdot 229^{2} + 159\cdot 229^{3} + 216\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 211 + 127\cdot 229 + 165\cdot 229^{2} + 58\cdot 229^{3} + 67\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,8,7,6)$
$(1,7,4,2)(3,8,5,6)$
$(1,4)(3,8)(5,6)$
$(1,4)(2,7)(3,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,7)(3,5)(6,8)$$-2$
$4$$2$$(1,4)(3,8)(5,6)$$0$
$2$$4$$(1,7,4,2)(3,8,5,6)$$0$
$4$$4$$(1,3,4,5)(2,8,7,6)$$0$
$2$$8$$(1,8,7,5,4,6,2,3)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,6,7,3,4,8,2,5)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.