Properties

Label 2.2e2_17e2.8t7.1c2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{2} \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$1156= 2^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 5 x^{6} + 9 x^{5} - 26 x^{4} + 35 x^{3} - 31 x^{2} + 10 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.2e2_17.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 4 + 66\cdot 89 + 77\cdot 89^{2} + 37\cdot 89^{3} + 32\cdot 89^{4} + 73\cdot 89^{5} +O\left(89^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 35 + 7\cdot 89 + 88\cdot 89^{2} + 9\cdot 89^{3} + 79\cdot 89^{4} + 23\cdot 89^{5} + 77\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 52 + 2\cdot 89 + 19\cdot 89^{2} + 33\cdot 89^{3} + 59\cdot 89^{4} + 40\cdot 89^{5} + 87\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 57 + 33\cdot 89 + 82\cdot 89^{2} + 30\cdot 89^{3} + 33\cdot 89^{4} + 38\cdot 89^{5} + 85\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 67 + 58\cdot 89 + 58\cdot 89^{2} + 79\cdot 89^{3} + 30\cdot 89^{4} + 35\cdot 89^{5} + 65\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 73 + 68\cdot 89 + 87\cdot 89^{2} + 80\cdot 89^{3} + 49\cdot 89^{4} + 37\cdot 89^{5} + 82\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 79 + 59\cdot 89 + 83\cdot 89^{2} + 43\cdot 89^{3} + 47\cdot 89^{4} + 58\cdot 89^{5} + 6\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 81 + 58\cdot 89 + 36\cdot 89^{2} + 39\cdot 89^{3} + 23\cdot 89^{4} + 48\cdot 89^{5} + 39\cdot 89^{6} +O\left(89^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5)(4,7)$
$(1,4,2,5,8,7,6,3)$
$(1,8)(2,6)$
$(1,2,8,6)(3,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,6)(3,5)(4,7)$$-2$
$2$$2$$(1,8)(2,6)$$0$
$1$$4$$(1,2,8,6)(3,4,5,7)$$-2 \zeta_{4}$
$1$$4$$(1,6,8,2)(3,7,5,4)$$2 \zeta_{4}$
$2$$4$$(1,2,8,6)(3,7,5,4)$$0$
$2$$8$$(1,4,2,5,8,7,6,3)$$0$
$2$$8$$(1,5,6,4,8,3,2,7)$$0$
$2$$8$$(1,7,6,5,8,4,2,3)$$0$
$2$$8$$(1,5,2,7,8,3,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.