Properties

Label 2.1156.8t7.a
Dimension $2$
Group $C_8:C_2$
Conductor $1156$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:\(1156\)\(\medspace = 2^{2} \cdot 17^{2} \)
Artin number field: Galois closure of 8.4.6565418768.1
Galois orbit size: $2$
Smallest permutation container: $C_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ \( 4 + 66\cdot 89 + 77\cdot 89^{2} + 37\cdot 89^{3} + 32\cdot 89^{4} + 73\cdot 89^{5} +O(89^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 35 + 7\cdot 89 + 88\cdot 89^{2} + 9\cdot 89^{3} + 79\cdot 89^{4} + 23\cdot 89^{5} + 77\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 52 + 2\cdot 89 + 19\cdot 89^{2} + 33\cdot 89^{3} + 59\cdot 89^{4} + 40\cdot 89^{5} + 87\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 57 + 33\cdot 89 + 82\cdot 89^{2} + 30\cdot 89^{3} + 33\cdot 89^{4} + 38\cdot 89^{5} + 85\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 67 + 58\cdot 89 + 58\cdot 89^{2} + 79\cdot 89^{3} + 30\cdot 89^{4} + 35\cdot 89^{5} + 65\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 73 + 68\cdot 89 + 87\cdot 89^{2} + 80\cdot 89^{3} + 49\cdot 89^{4} + 37\cdot 89^{5} + 82\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 79 + 59\cdot 89 + 83\cdot 89^{2} + 43\cdot 89^{3} + 47\cdot 89^{4} + 58\cdot 89^{5} + 6\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 81 + 58\cdot 89 + 36\cdot 89^{2} + 39\cdot 89^{3} + 23\cdot 89^{4} + 48\cdot 89^{5} + 39\cdot 89^{6} +O(89^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5)(4,7)$
$(1,4,2,5,8,7,6,3)$
$(1,8)(2,6)$
$(1,2,8,6)(3,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,6)$ $0$ $0$
$1$ $4$ $(1,2,8,6)(3,4,5,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,6,8,2)(3,7,5,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,2,8,6)(3,7,5,4)$ $0$ $0$
$2$ $8$ $(1,4,2,5,8,7,6,3)$ $0$ $0$
$2$ $8$ $(1,5,6,4,8,3,2,7)$ $0$ $0$
$2$ $8$ $(1,7,6,5,8,4,2,3)$ $0$ $0$
$2$ $8$ $(1,5,2,7,8,3,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.