Properties

Label 2.2e2_17e2.8t17.2c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$1156= 2^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 10 x^{5} - 6 x^{4} - 20 x^{3} + 55 x^{2} - 62 x + 25 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e2_17.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 4\cdot 149 + 2\cdot 149^{2} + 88\cdot 149^{3} + 123\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 74\cdot 149 + 107\cdot 149^{2} + 109\cdot 149^{3} + 61\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 80\cdot 149 + 87\cdot 149^{2} + 24\cdot 149^{3} + 40\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 25\cdot 149 + 29\cdot 149^{2} + 132\cdot 149^{3} + 117\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 86 + 106\cdot 149 + 107\cdot 149^{2} + 123\cdot 149^{3} + 64\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 92 + 113\cdot 149 + 41\cdot 149^{2} + 103\cdot 149^{3} + 5\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 143 + 66\cdot 149 + 44\cdot 149^{2} + 91\cdot 149^{3} + 12\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 148 + 124\cdot 149 + 26\cdot 149^{2} + 72\cdot 149^{3} + 20\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(3,5)$
$(1,5)(2,8)(3,6)(4,7)$
$(2,5,4,3)$
$(1,6)(2,4)(3,5)(7,8)$
$(1,8,6,7)(2,5,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)(7,8)$$-2$
$2$$2$$(2,4)(3,5)$$0$
$4$$2$$(1,5)(2,8)(3,6)(4,7)$$0$
$1$$4$$(1,7,6,8)(2,5,4,3)$$-2 \zeta_{4}$
$1$$4$$(1,8,6,7)(2,3,4,5)$$2 \zeta_{4}$
$2$$4$$(1,8,6,7)(2,5,4,3)$$0$
$2$$4$$(2,5,4,3)$$-\zeta_{4} + 1$
$2$$4$$(2,3,4,5)$$\zeta_{4} + 1$
$2$$4$$(1,8,6,7)(2,4)(3,5)$$\zeta_{4} - 1$
$2$$4$$(1,7,6,8)(2,4)(3,5)$$-\zeta_{4} - 1$
$4$$4$$(1,3,6,5)(2,8,4,7)$$0$
$4$$8$$(1,4,7,3,6,2,8,5)$$0$
$4$$8$$(1,3,8,4,6,5,7,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.