Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 21 + 4\cdot 149 + 2\cdot 149^{2} + 88\cdot 149^{3} + 123\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 74\cdot 149 + 107\cdot 149^{2} + 109\cdot 149^{3} + 61\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 35 + 80\cdot 149 + 87\cdot 149^{2} + 24\cdot 149^{3} + 40\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 41 + 25\cdot 149 + 29\cdot 149^{2} + 132\cdot 149^{3} + 117\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 86 + 106\cdot 149 + 107\cdot 149^{2} + 123\cdot 149^{3} + 64\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 92 + 113\cdot 149 + 41\cdot 149^{2} + 103\cdot 149^{3} + 5\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 143 + 66\cdot 149 + 44\cdot 149^{2} + 91\cdot 149^{3} + 12\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 148 + 124\cdot 149 + 26\cdot 149^{2} + 72\cdot 149^{3} + 20\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,4)(3,5)$ |
| $(1,5)(2,8)(3,6)(4,7)$ |
| $(2,5,4,3)$ |
| $(1,6)(2,4)(3,5)(7,8)$ |
| $(1,8,6,7)(2,5,4,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,5)(7,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,4)(3,5)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,8)(3,6)(4,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,7,6,8)(2,5,4,3)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,8,6,7)(2,3,4,5)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,8,6,7)(2,5,4,3)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(2,5,4,3)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(2,3,4,5)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,8,6,7)(2,4)(3,5)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,7,6,8)(2,4)(3,5)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $4$ |
$4$ |
$(1,3,6,5)(2,8,4,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,3,6,2,8,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,3,8,4,6,5,7,2)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.