Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 19\cdot 149 + 46\cdot 149^{2} + 81\cdot 149^{3} + 103\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 61 + 34\cdot 149 + 129\cdot 149^{2} + 79\cdot 149^{3} + 110\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 81 + 8\cdot 149 + 91\cdot 149^{2} + 83\cdot 149^{3} + 71\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 98 + 18\cdot 149 + 67\cdot 149^{3} + 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 100 + 63\cdot 149 + 100\cdot 149^{2} + 70\cdot 149^{3} + 78\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 122 + 35\cdot 149 + 36\cdot 149^{2} + 22\cdot 149^{3} + 101\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 124 + 114\cdot 149 + 49\cdot 149^{2} + 142\cdot 149^{3} + 36\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 138 + 2\cdot 149 + 143\cdot 149^{2} + 48\cdot 149^{3} + 92\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8,4,7)(2,6,3,5)$ |
| $(2,3)(7,8)$ |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,5,4,6)(2,7,3,8)$ |
| $(2,7,3,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,6)(7,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,3)(7,8)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,4)(5,7)(6,8)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,5,4,6)(2,7,3,8)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,6,4,5)(2,8,3,7)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(2,7,3,8)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(2,8,3,7)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,5,4,6)(2,3)(7,8)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,6,4,5)(2,3)(7,8)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,5,4,6)(2,8,3,7)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,8,4,7)(2,6,3,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,2,6,8,4,3,5,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,8,5,2,4,7,6,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.