Properties

Label 2.2e2_17e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1156= 2^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 17 x^{4} - 22 x^{3} + 2 x^{2} + 8 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 37\cdot 149 + 80\cdot 149^{2} + 131\cdot 149^{3} + 28\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 123\cdot 149 + 134\cdot 149^{2} + 72\cdot 149^{3} + 124\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 14\cdot 149 + 48\cdot 149^{2} + 19\cdot 149^{3} + 11\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 100\cdot 149 + 102\cdot 149^{2} + 109\cdot 149^{3} + 106\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 119 + 48\cdot 149 + 46\cdot 149^{2} + 39\cdot 149^{3} + 42\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 126 + 134\cdot 149 + 100\cdot 149^{2} + 129\cdot 149^{3} + 137\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 129 + 25\cdot 149 + 14\cdot 149^{2} + 76\cdot 149^{3} + 24\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 136 + 111\cdot 149 + 68\cdot 149^{2} + 17\cdot 149^{3} + 120\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,2,4,3)(5,6,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.