Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(1156\)\(\medspace = 2^{2} \cdot 17^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.2.19652.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{17})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 7 + 86\cdot 149 + 54\cdot 149^{2} + 90\cdot 149^{3} + 95\cdot 149^{4} +O(149^{5})\) |
$r_{ 2 }$ | $=$ | \( 10 + 126\cdot 149 + 116\cdot 149^{2} + 36\cdot 149^{3} + 131\cdot 149^{4} +O(149^{5})\) |
$r_{ 3 }$ | $=$ | \( 139 + 22\cdot 149 + 32\cdot 149^{2} + 112\cdot 149^{3} + 17\cdot 149^{4} +O(149^{5})\) |
$r_{ 4 }$ | $=$ | \( 142 + 62\cdot 149 + 94\cdot 149^{2} + 58\cdot 149^{3} + 53\cdot 149^{4} +O(149^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |