Properties

Label 2.2e2_17_89.4t3.17
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 17 \cdot 89 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6052= 2^{2} \cdot 17 \cdot 89 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 14 x^{5} + 777 x^{4} - 1590 x^{3} + 242 x^{2} - 7656 x + 121104 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 57\cdot 61 + 24\cdot 61^{2} + 10\cdot 61^{3} + 55\cdot 61^{4} + 24\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 20 + 59\cdot 61 + 12\cdot 61^{2} + 39\cdot 61^{3} + 20\cdot 61^{4} + 46\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 24 + 42\cdot 61 + 33\cdot 61^{2} + 61^{3} + 41\cdot 61^{4} + 38\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 27 + 7\cdot 61 + 41\cdot 61^{2} + 31\cdot 61^{3} + 9\cdot 61^{4} + 11\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 + 50\cdot 61 + 5\cdot 61^{2} + 40\cdot 61^{3} + 47\cdot 61^{4} + 23\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 40 + 21\cdot 61 + 41\cdot 61^{2} + 48\cdot 61^{3} + 23\cdot 61^{4} + 48\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 48 + 53\cdot 61 + 49\cdot 61^{2} + 22\cdot 61^{3} + 56\cdot 61^{4} + 24\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 53 + 12\cdot 61 + 34\cdot 61^{2} + 49\cdot 61^{3} + 50\cdot 61^{4} + 25\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,7,8)(3,6,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,4)(3,8)(6,7)$ $0$
$2$ $4$ $(1,2,7,8)(3,6,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.