Properties

Label 2.2e2_17_29e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 17 \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$57188= 2^{2} \cdot 17 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 9 x^{2} - 57 x - 202 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 37\cdot 53 + 3\cdot 53^{2} + 36\cdot 53^{3} + 47\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 26\cdot 53 + 39\cdot 53^{2} + 13\cdot 53^{3} + 21\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 16\cdot 53 + 51\cdot 53^{2} + 23\cdot 53^{3} + 24\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 26\cdot 53 + 11\cdot 53^{2} + 32\cdot 53^{3} + 12\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(3,4)$ $0$
$2$ $4$ $(1,3,2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.