Properties

Label 2.2e2_13e2_19.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 13^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$12844= 2^{2} \cdot 13^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 12 x^{4} + 3 x^{3} + 138 x^{2} + 133 x + 83 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.13_19.6t1.3c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 22 + \left(27 a + 25\right)\cdot 31 + \left(24 a + 20\right)\cdot 31^{2} + \left(16 a + 17\right)\cdot 31^{3} + \left(6 a + 29\right)\cdot 31^{4} + \left(9 a + 25\right)\cdot 31^{5} + \left(29 a + 12\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 17 + \left(a + 9\right)\cdot 31 + \left(12 a + 4\right)\cdot 31^{2} + \left(21 a + 15\right)\cdot 31^{3} + \left(4 a + 10\right)\cdot 31^{4} + \left(24 a + 21\right)\cdot 31^{5} + \left(20 a + 5\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 22 + \left(29 a + 25\right)\cdot 31 + \left(18 a + 26\right)\cdot 31^{2} + \left(9 a + 14\right)\cdot 31^{3} + \left(26 a + 29\right)\cdot 31^{4} + \left(6 a + 2\right)\cdot 31^{5} + \left(10 a + 23\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 27 + \left(13 a + 21\right)\cdot 31 + \left(14 a + 6\right)\cdot 31^{2} + \left(5 a + 11\right)\cdot 31^{3} + \left(15 a + 17\right)\cdot 31^{4} + \left(5 a + 4\right)\cdot 31^{5} + \left(a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 21 + \left(3 a + 3\right)\cdot 31 + \left(6 a + 12\right)\cdot 31^{2} + \left(14 a + 26\right)\cdot 31^{3} + \left(24 a + 25\right)\cdot 31^{4} + \left(21 a + 6\right)\cdot 31^{5} + a\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 18 + \left(17 a + 6\right)\cdot 31 + \left(16 a + 22\right)\cdot 31^{2} + \left(25 a + 7\right)\cdot 31^{3} + \left(15 a + 11\right)\cdot 31^{4} + 25 a\cdot 31^{5} + \left(29 a + 24\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5,6)$
$(1,3,2,6,4,5)$
$(1,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$1$$3$$(1,2,4)(3,6,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,4,2)(3,5,6)$$2 \zeta_{3}$
$2$$3$$(3,5,6)$$\zeta_{3} + 1$
$2$$3$$(3,6,5)$$-\zeta_{3}$
$2$$3$$(1,4,2)(3,6,5)$$-1$
$3$$6$$(1,3,2,6,4,5)$$0$
$3$$6$$(1,5,4,6,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.