Properties

Label 2.2e2_13e2_19.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 13^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$12844= 2^{2} \cdot 13^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 19 x^{4} - 27 x^{3} + 154 x^{2} - 282 x + 766 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 19 + 17\cdot 31 + 15\cdot 31^{2} + 5\cdot 31^{3} + 5\cdot 31^{4} + 28\cdot 31^{5} + 29\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 8 + \left(20 a + 3\right)\cdot 31 + \left(20 a + 7\right)\cdot 31^{2} + \left(15 a + 5\right)\cdot 31^{3} + \left(3 a + 23\right)\cdot 31^{4} + \left(4 a + 19\right)\cdot 31^{5} + \left(8 a + 16\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 + 23\cdot 31 + 30\cdot 31^{2} + 25\cdot 31^{3} + 11\cdot 31^{4} + 3\cdot 31^{5} + 22\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 30 + \left(15 a + 9\right)\cdot 31 + \left(23 a + 5\right)\cdot 31^{2} + \left(5 a + 26\right)\cdot 31^{3} + \left(18 a + 3\right)\cdot 31^{4} + \left(18 a + 30\right)\cdot 31^{5} + \left(7 a + 14\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 20 + \left(10 a + 6\right)\cdot 31 + \left(10 a + 28\right)\cdot 31^{2} + \left(15 a + 15\right)\cdot 31^{3} + \left(27 a + 14\right)\cdot 31^{4} + \left(26 a + 24\right)\cdot 31^{5} + \left(22 a + 28\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 15 + \left(15 a + 1\right)\cdot 31 + \left(7 a + 6\right)\cdot 31^{2} + \left(25 a + 14\right)\cdot 31^{3} + \left(12 a + 3\right)\cdot 31^{4} + \left(12 a + 18\right)\cdot 31^{5} + \left(23 a + 11\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,6)$$-2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$3$$2$$(1,6)(3,5)$$0$
$2$$3$$(1,4,6)(2,5,3)$$-1$
$2$$6$$(1,5,4,3,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.