Properties

Label 2.2e2_13e2_19.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 13^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$12844= 2^{2} \cdot 13^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 3 x^{3} + 38 x^{2} - 11 x - 113 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 29 + 3\cdot 29^{2} + 26\cdot 29^{3} + 28\cdot 29^{4} + 12\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 17 + \left(9 a + 2\right)\cdot 29 + \left(2 a + 26\right)\cdot 29^{2} + \left(5 a + 19\right)\cdot 29^{3} + \left(3 a + 6\right)\cdot 29^{4} + \left(8 a + 25\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 7 + \left(9 a + 21\right)\cdot 29 + \left(2 a + 26\right)\cdot 29^{2} + \left(5 a + 8\right)\cdot 29^{3} + 3 a\cdot 29^{4} + \left(8 a + 16\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 2 + \left(19 a + 14\right)\cdot 29 + \left(26 a + 28\right)\cdot 29^{2} + \left(23 a + 2\right)\cdot 29^{3} + \left(25 a + 11\right)\cdot 29^{4} + \left(20 a + 24\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ a + 12 + \left(19 a + 24\right)\cdot 29 + \left(26 a + 27\right)\cdot 29^{2} + \left(23 a + 13\right)\cdot 29^{3} + \left(25 a + 17\right)\cdot 29^{4} + \left(20 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 20 + 21\cdot 29 + 3\cdot 29^{2} + 15\cdot 29^{3} + 22\cdot 29^{4} + 3\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)$ $0$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$
$2$ $3$ $(1,5,2)(3,6,4)$ $-1$
$2$ $6$ $(1,4,2,6,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.