Properties

Label 2.2e2_13e2_17.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 13^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11492= 2^{2} \cdot 13^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 11 x^{6} - 101 x^{4} + 245 x^{2} + 1444 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 50\cdot 53 + 43\cdot 53^{2} + 35\cdot 53^{3} + 4\cdot 53^{4} + 31\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 + 40\cdot 53 + 40\cdot 53^{2} + 6\cdot 53^{3} + 44\cdot 53^{4} + 23\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 + 11\cdot 53 + 39\cdot 53^{2} + 32\cdot 53^{3} + 8\cdot 53^{4} + 19\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 35\cdot 53 + 35\cdot 53^{2} + 5\cdot 53^{3} + 43\cdot 53^{4} + 47\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 + 17\cdot 53 + 17\cdot 53^{2} + 47\cdot 53^{3} + 9\cdot 53^{4} + 5\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 44 + 41\cdot 53 + 13\cdot 53^{2} + 20\cdot 53^{3} + 44\cdot 53^{4} + 33\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 45 + 12\cdot 53 + 12\cdot 53^{2} + 46\cdot 53^{3} + 8\cdot 53^{4} + 29\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 49 + 2\cdot 53 + 9\cdot 53^{2} + 17\cdot 53^{3} + 48\cdot 53^{4} + 21\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$2$$4$$(1,3,2,4)(5,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.