Properties

Label 2.2e2_13e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$676= 2^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 16 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 20 + \left(18 a + 12\right)\cdot 23 + \left(12 a + 3\right)\cdot 23^{2} + \left(12 a + 3\right)\cdot 23^{3} + \left(4 a + 6\right)\cdot 23^{4} + \left(21 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 15 + \left(4 a + 17\right)\cdot 23 + \left(10 a + 10\right)\cdot 23^{2} + \left(10 a + 15\right)\cdot 23^{3} + \left(18 a + 2\right)\cdot 23^{4} + \left(a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 + 3\cdot 23 + 17\cdot 23^{2} + 17\cdot 23^{3} + 2\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 16 + \left(13 a + 22\right)\cdot 23 + \left(21 a + 8\right)\cdot 23^{2} + \left(9 a + 19\right)\cdot 23^{3} + \left(5 a + 13\right)\cdot 23^{4} + \left(14 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 6 + 5\cdot 23 + 13\cdot 23^{2} + 18\cdot 23^{3} + 5\cdot 23^{4} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 10 + \left(9 a + 7\right)\cdot 23 + \left(a + 15\right)\cdot 23^{2} + \left(13 a + 17\right)\cdot 23^{3} + \left(17 a + 14\right)\cdot 23^{4} + \left(8 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2,3)(4,6,5)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)$$-2$
$3$$2$$(2,3)(5,6)$$0$
$3$$2$$(1,4)(2,5)(3,6)$$0$
$2$$3$$(1,2,3)(4,6,5)$$-1$
$2$$6$$(1,6,3,4,2,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.