Properties

Label 2.2e2_13_79.24t22.1c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 13 \cdot 79 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$4108= 2^{2} \cdot 13 \cdot 79 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 3 x^{6} - x^{5} + 62 x^{3} - 90 x^{2} + 60 x - 56 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.13_79.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 17\cdot 61 + 26\cdot 61^{2} + 49\cdot 61^{3} + 38\cdot 61^{4} + 51\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 45 + \left(43 a + 5\right)\cdot 61 + \left(37 a + 49\right)\cdot 61^{2} + \left(4 a + 37\right)\cdot 61^{3} + \left(40 a + 13\right)\cdot 61^{4} + \left(17 a + 57\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 32 + \left(17 a + 1\right)\cdot 61 + \left(23 a + 43\right)\cdot 61^{2} + \left(56 a + 4\right)\cdot 61^{3} + \left(20 a + 49\right)\cdot 61^{4} + \left(43 a + 34\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 53 + \left(39 a + 43\right)\cdot 61 + \left(19 a + 26\right)\cdot 61^{2} + \left(42 a + 21\right)\cdot 61^{3} + \left(59 a + 16\right)\cdot 61^{4} + \left(26 a + 55\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 27 + \left(21 a + 48\right)\cdot 61 + \left(41 a + 6\right)\cdot 61^{2} + \left(18 a + 44\right)\cdot 61^{3} + \left(a + 33\right)\cdot 61^{4} + \left(34 a + 22\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 17 + \left(25 a + 5\right)\cdot 61 + \left(13 a + 57\right)\cdot 61^{2} + \left(9 a + 42\right)\cdot 61^{3} + \left(55 a + 19\right)\cdot 61^{4} + \left(22 a + 11\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 29 + 51\cdot 61 + 50\cdot 61^{2} + 4\cdot 61^{3} + 7\cdot 61^{4} + 32\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 40 a + 38 + \left(35 a + 9\right)\cdot 61 + \left(47 a + 45\right)\cdot 61^{2} + \left(51 a + 38\right)\cdot 61^{3} + \left(5 a + 4\right)\cdot 61^{4} + \left(38 a + 40\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(5,8)$
$(1,3,7,4)(2,8,5,6)$
$(1,5,7,2)(3,8,4,6)$
$(1,7)(2,5)(3,4)(6,8)$
$(1,2,8)(5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,5)(3,4)(6,8)$$-2$
$12$$2$$(1,7)(2,6)(5,8)$$0$
$8$$3$$(1,5,4)(2,3,7)$$-1$
$6$$4$$(1,3,7,4)(2,8,5,6)$$0$
$8$$6$$(1,3,5,7,4,2)(6,8)$$1$
$6$$8$$(1,2,3,8,7,5,4,6)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,5,3,6,7,2,4,8)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.