Properties

Label 2.2e2_13_29.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 13 \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1508= 2^{2} \cdot 13 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 22 x^{5} + 245 x^{4} - 542 x^{3} + 450 x^{2} - 1140 x + 1444 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_13_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 4\cdot 97 + 89\cdot 97^{2} + 85\cdot 97^{3} + 59\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 23\cdot 97 + 94\cdot 97^{2} + 7\cdot 97^{3} + 66\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 67 + 31\cdot 97 + 88\cdot 97^{2} + 16\cdot 97^{3} + 27\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 79\cdot 97 + 27\cdot 97^{2} + 71\cdot 97^{3} + 74\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 50\cdot 97 + 93\cdot 97^{2} + 35\cdot 97^{3} + 33\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 83 + 10\cdot 97 + 84\cdot 97^{2} + 46\cdot 97^{3} + 78\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 90 + 30\cdot 97 + 24\cdot 97^{2} + 25\cdot 97^{3} + 22\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 95 + 58\cdot 97 + 80\cdot 97^{2} + 26\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,8)(2,7,3,6)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,7)(2,4)(3,8)(5,6)$$0$
$2$$4$$(1,4,5,8)(2,7,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.