Properties

Label 2.2e2_139.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 139 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$556= 2^{2} \cdot 139 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 5 x^{7} + 4 x^{6} - 13 x^{5} + 4 x^{4} + 11 x^{3} - 8 x^{2} - 8 x - 4 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.139.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 31 a^{2} + 26 a + 18 + \left(19 a + 16\right)\cdot 37 + \left(15 a^{2} + 27 a + 5\right)\cdot 37^{2} + \left(32 a^{2} + 13 a + 31\right)\cdot 37^{3} + \left(8 a^{2} + 30 a + 9\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a^{2} + 33 a + 6 + \left(35 a^{2} + 26 a + 16\right)\cdot 37 + \left(20 a + 11\right)\cdot 37^{2} + \left(23 a^{2} + 29 a + 32\right)\cdot 37^{3} + \left(14 a^{2} + 36 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a^{2} + 5 a + 23 + \left(24 a^{2} + 32 a + 8\right)\cdot 37 + \left(35 a^{2} + a + 2\right)\cdot 37^{2} + \left(10 a^{2} + 21\right)\cdot 37^{3} + \left(6 a^{2} + 19 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a^{2} + 9 a + 34 + \left(4 a^{2} + 8 a + 8\right)\cdot 37 + \left(15 a^{2} + 18 a + 21\right)\cdot 37^{2} + \left(23 a^{2} + 32 a + 17\right)\cdot 37^{3} + \left(5 a^{2} + 26 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a^{2} + 17 a + 19 + \left(4 a^{2} + 10 a + 31\right)\cdot 37 + \left(2 a^{2} + 29 a + 27\right)\cdot 37^{2} + \left(28 a^{2} + 13\right)\cdot 37^{3} + \left(28 a^{2} + 21 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 7 a + 27 + \left(3 a^{2} + 3\right)\cdot 37 + \left(36 a^{2} + 8 a + 31\right)\cdot 37^{2} + \left(25 a^{2} + 33 a + 27\right)\cdot 37^{3} + \left(28 a^{2} + 29 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 29 a^{2} + 36 a + 22 + \left(13 a^{2} + 14 a + 2\right)\cdot 37 + \left(14 a + 9\right)\cdot 37^{2} + \left(3 a^{2} + 7 a + 26\right)\cdot 37^{3} + \left(16 a^{2} + 18 a + 12\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 21 a^{2} + 31 a + 15 + \left(31 a^{2} + 6 a + 28\right)\cdot 37 + \left(19 a^{2} + 17 a + 24\right)\cdot 37^{2} + \left(13 a^{2} + 22 a + 29\right)\cdot 37^{3} + \left(36 a^{2} + 22 a + 8\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 33 a^{2} + 21 a + 25 + \left(28 a^{2} + 28 a + 31\right)\cdot 37 + \left(22 a^{2} + 10 a + 14\right)\cdot 37^{2} + \left(24 a^{2} + 8 a + 22\right)\cdot 37^{3} + \left(2 a^{2} + 17 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,5)(2,3,7)(4,9,6)$
$(1,5)(2,4)(3,6)(7,9)$
$(1,2,6,8,3,4,5,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,5)(2,4)(3,6)(7,9)$$0$
$2$$3$$(1,8,5)(2,3,7)(4,9,6)$$-1$
$2$$9$$(1,2,6,8,3,4,5,7,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,6,3,5,9,2,8,4,7)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,3,9,8,7,6,5,2,4)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.