Properties

Label 2.2e2_137.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 2^{2} \cdot 137 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$548= 2^{2} \cdot 137 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 18 x^{5} + 17 x^{4} - 6 x^{3} + 2 x^{2} + 12 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 89\cdot 173 + 101\cdot 173^{2} + 74\cdot 173^{3} + 111\cdot 173^{4} + 115\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 96\cdot 173 + 166\cdot 173^{2} + 35\cdot 173^{3} + 47\cdot 173^{4} + 42\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 76 + 84\cdot 173^{2} + 166\cdot 173^{3} + 20\cdot 173^{4} + 25\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 78 + 7\cdot 173 + 149\cdot 173^{2} + 127\cdot 173^{3} + 129\cdot 173^{4} + 124\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 118 + 121\cdot 173 + 35\cdot 173^{2} + 61\cdot 173^{3} + 79\cdot 173^{4} + 153\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 128 + 158\cdot 173 + 67\cdot 173^{2} + 25\cdot 173^{3} + 173^{4} + 161\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 139 + 90\cdot 173 + 27\cdot 173^{2} + 118\cdot 173^{3} + 103\cdot 173^{4} + 117\cdot 173^{5} +O\left(173^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 149 + 127\cdot 173 + 59\cdot 173^{2} + 82\cdot 173^{3} + 25\cdot 173^{4} + 125\cdot 173^{5} +O\left(173^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,7)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,5,2,6,4,8,3,7)$
$(1,3,4,2)(5,7,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,6)(3,7)(4,5)$ $0$ $0$
$4$ $2$ $(1,4)(5,6)(7,8)$ $0$ $0$
$2$ $4$ $(1,3,4,2)(5,7,8,6)$ $0$ $0$
$2$ $8$ $(1,7,3,8,4,6,2,5)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,8,2,7,4,5,3,6)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.