Properties

Label 2.2e2_137.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 137 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$548= 2^{2} \cdot 137 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 2 x^{5} + 65 x^{4} - 134 x^{3} + 18 x^{2} - 192 x + 1024 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_137.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 58\cdot 73 + 52\cdot 73^{2} + 12\cdot 73^{3} + 26\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 70\cdot 73 + 53\cdot 73^{2} + 20\cdot 73^{3} + 48\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 4\cdot 73 + 49\cdot 73^{2} + 43\cdot 73^{3} + 32\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 19\cdot 73^{2} + 35\cdot 73^{3} + 52\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 + 10\cdot 73 + 25\cdot 73^{2} + 54\cdot 73^{3} + 34\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 + 13\cdot 73 + 63\cdot 73^{2} + 68\cdot 73^{3} + 38\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 40 + 51\cdot 73 + 24\cdot 73^{2} + 68\cdot 73^{3} + 68\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 61 + 10\cdot 73 + 4\cdot 73^{2} + 61\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(1,2,3,6)(4,7,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,5)(7,8)$$-2$
$2$$2$$(1,4)(2,8)(3,5)(6,7)$$0$
$2$$2$$(1,8)(2,5)(3,7)(4,6)$$0$
$2$$4$$(1,2,3,6)(4,7,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.