Properties

Label 2.2e2_1289.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 1289 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5156= 2^{2} \cdot 1289 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 6 x^{5} + 645 x^{4} - 1310 x^{3} + 98 x^{2} - 4340 x + 96100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 62\cdot 101 + 25\cdot 101^{2} + 83\cdot 101^{3} + 10\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 96\cdot 101 + 21\cdot 101^{2} + 88\cdot 101^{3} + 3\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 31\cdot 101 + 11\cdot 101^{2} + 15\cdot 101^{3} + 95\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 + 16\cdot 101 + 28\cdot 101^{2} + 7\cdot 101^{3} + 64\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 64\cdot 101 + 60\cdot 101^{2} + 19\cdot 101^{3} + 96\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 89\cdot 101 + 59\cdot 101^{3} + 47\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 73 + 33\cdot 101 + 46\cdot 101^{2} + 52\cdot 101^{3} + 79\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 89 + 9\cdot 101 + 7\cdot 101^{2} + 79\cdot 101^{3} + 6\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.