Properties

Label 2.2e2_1289.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 1289 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$5156= 2^{2} \cdot 1289 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 19 x^{2} - 18 x + 85 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_1289.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 4\cdot 5 + 5^{2} + 3\cdot 5^{3} + 2\cdot 5^{5} + 5^{6} +O\left(5^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 1 + 5 + 3\cdot 5^{2} + 5^{3} + 4\cdot 5^{4} + 2\cdot 5^{5} + 3\cdot 5^{6} + 4\cdot 5^{7} +O\left(5^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 2 + 4\cdot 5^{3} + 2\cdot 5^{4} + 3\cdot 5^{5} + 2\cdot 5^{6} + 4\cdot 5^{7} +O\left(5^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 4 + 4\cdot 5 + 4\cdot 5^{2} + 2\cdot 5^{4} + 5^{5} + 2\cdot 5^{6} +O\left(5^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.