Properties

Label 2.2e2_11e2_43.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 11^{2} \cdot 43 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$20812= 2^{2} \cdot 11^{2} \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} - 9 x^{3} + 28 x^{2} + 41 x + 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 21\cdot 37 + 14\cdot 37^{2} + 37^{3} + 29\cdot 37^{4} + 14\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 28 + \left(21 a + 1\right)\cdot 37 + \left(22 a + 5\right)\cdot 37^{2} + \left(18 a + 33\right)\cdot 37^{3} + \left(28 a + 3\right)\cdot 37^{4} + 33 a\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 22 + \left(15 a + 33\right)\cdot 37 + \left(14 a + 36\right)\cdot 37^{2} + \left(18 a + 10\right)\cdot 37^{3} + \left(8 a + 25\right)\cdot 37^{4} + \left(3 a + 32\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 32 + \left(15 a + 31\right)\cdot 37 + \left(14 a + 34\right)\cdot 37^{2} + \left(18 a + 30\right)\cdot 37^{3} + \left(8 a + 19\right)\cdot 37^{4} + \left(3 a + 11\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 28 + 22\cdot 37 + 16\cdot 37^{2} + 18\cdot 37^{3} + 34\cdot 37^{4} + 35\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 1 + 21 a\cdot 37 + \left(22 a + 3\right)\cdot 37^{2} + \left(18 a + 16\right)\cdot 37^{3} + \left(28 a + 35\right)\cdot 37^{4} + \left(33 a + 15\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2,4,5,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-2$
$3$ $2$ $(2,3)(4,6)$ $0$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$2$ $3$ $(1,4,6)(2,5,3)$ $-1$
$2$ $6$ $(1,2,4,5,6,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.