Properties

Label 2.2e2_11e2_37.6t3.4c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 11^{2} \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$17908= 2^{2} \cdot 11^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - x^{3} + 34 x^{2} - 13 x + 103 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 2\cdot 23 + 7\cdot 23^{2} + 13\cdot 23^{3} + 22\cdot 23^{4} + 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 16 + \left(16 a + 7\right)\cdot 23 + \left(4 a + 4\right)\cdot 23^{2} + \left(22 a + 3\right)\cdot 23^{3} + 3 a\cdot 23^{4} + \left(21 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 21 + \left(6 a + 7\right)\cdot 23 + \left(18 a + 14\right)\cdot 23^{2} + 18\cdot 23^{3} + \left(19 a + 10\right)\cdot 23^{4} + \left(a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 12 + \left(6 a + 20\right)\cdot 23 + \left(18 a + 19\right)\cdot 23^{2} + 19\cdot 23^{3} + \left(19 a + 8\right)\cdot 23^{4} + \left(a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 2 + \left(16 a + 18\right)\cdot 23 + \left(4 a + 21\right)\cdot 23^{2} + \left(22 a + 1\right)\cdot 23^{3} + \left(3 a + 2\right)\cdot 23^{4} + \left(21 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 + 12\cdot 23 + 23^{2} + 12\cdot 23^{3} + 23^{4} + 22\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(5,6)$
$(1,3,2,6,4,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)$$-2$
$3$$2$$(1,2)(5,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,2,4)(3,6,5)$$-1$
$2$$6$$(1,3,2,6,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.