Properties

Label 2.2e2_11e2_19.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 11^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$9196= 2^{2} \cdot 11^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 11 x^{4} + 21 x^{3} + 52 x^{2} - 174 x - 314 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 21 + \left(14 a + 11\right)\cdot 29 + \left(6 a + 3\right)\cdot 29^{2} + \left(12 a + 8\right)\cdot 29^{3} + \left(12 a + 18\right)\cdot 29^{4} + \left(9 a + 27\right)\cdot 29^{5} + \left(a + 5\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 28 + 2\cdot 29 + 28\cdot 29^{2} + 11\cdot 29^{3} + 25\cdot 29^{4} + 11\cdot 29^{5} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 27 + 20\cdot 29 + 13\cdot 29^{2} + 19\cdot 29^{3} + 17\cdot 29^{4} + 5\cdot 29^{5} + 6\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 15 + \left(13 a + 26\right)\cdot 29 + \left(27 a + 20\right)\cdot 29^{2} + 3\cdot 29^{3} + \left(13 a + 19\right)\cdot 29^{4} + \left(a + 21\right)\cdot 29^{5} + \left(a + 4\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 27 + \left(15 a + 21\right)\cdot 29 + \left(a + 28\right)\cdot 29^{2} + \left(28 a + 9\right)\cdot 29^{3} + \left(15 a + 25\right)\cdot 29^{4} + \left(27 a + 15\right)\cdot 29^{5} + \left(27 a + 8\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 1 + \left(14 a + 3\right)\cdot 29 + \left(22 a + 21\right)\cdot 29^{2} + \left(16 a + 4\right)\cdot 29^{3} + \left(16 a + 10\right)\cdot 29^{4} + \left(19 a + 4\right)\cdot 29^{5} + \left(27 a + 3\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,6)$$-2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$3$$2$$(1,6)(4,5)$$0$
$2$$3$$(1,3,6)(2,5,4)$$-1$
$2$$6$$(1,5,3,4,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.