Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 10 + \left(18 a + 5\right)\cdot 19 + \left(2 a + 16\right)\cdot 19^{2} + \left(a + 8\right)\cdot 19^{3} + \left(3 a + 6\right)\cdot 19^{4} + \left(12 a + 10\right)\cdot 19^{5} + \left(4 a + 4\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 2 + \left(a + 12\right)\cdot 19 + \left(11 a + 7\right)\cdot 19^{2} + \left(8 a + 9\right)\cdot 19^{3} + \left(18 a + 13\right)\cdot 19^{4} + 13 a\cdot 19^{5} + \left(a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 a + 3 + \left(17 a + 12\right)\cdot 19 + \left(7 a + 17\right)\cdot 19^{2} + \left(10 a + 6\right)\cdot 19^{3} + 4\cdot 19^{4} + \left(5 a + 15\right)\cdot 19^{5} + \left(17 a + 3\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 + 3\cdot 19 + 8\cdot 19^{2} + 5\cdot 19^{3} + 2\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 a + 17 + 16\cdot 19 + 16 a\cdot 19^{2} + \left(17 a + 7\right)\cdot 19^{3} + \left(15 a + 8\right)\cdot 19^{4} + 6 a\cdot 19^{5} + \left(14 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 + 7\cdot 19 + 6\cdot 19^{2} + 5\cdot 19^{4} + 9\cdot 19^{5} + 17\cdot 19^{6} +O\left(19^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,5)(4,6)$ |
| $(2,4)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,5)(4,6)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,6)(3,4)$ |
$0$ |
| $2$ |
$3$ |
$(1,5,6)(2,4,3)$ |
$-1$ |
| $2$ |
$6$ |
$(1,4,5,3,6,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.