Properties

Label 2.2e2_11e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$484= 2^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{4} - 6 x^{3} + 9 x^{2} - 5 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 21 + \left(8 a + 4\right)\cdot 23 + \left(20 a + 13\right)\cdot 23^{2} + \left(22 a + 7\right)\cdot 23^{3} + \left(10 a + 10\right)\cdot 23^{4} + \left(2 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 20 + \left(a + 17\right)\cdot 23 + \left(7 a + 22\right)\cdot 23^{2} + \left(20 a + 12\right)\cdot 23^{3} + \left(22 a + 8\right)\cdot 23^{4} + \left(9 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 15 + \left(14 a + 2\right)\cdot 23 + \left(2 a + 22\right)\cdot 23^{2} + 9\cdot 23^{3} + \left(12 a + 9\right)\cdot 23^{4} + \left(20 a + 14\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 17 + \left(21 a + 10\right)\cdot 23 + \left(15 a + 12\right)\cdot 23^{2} + 2 a\cdot 23^{3} + 11\cdot 23^{4} + \left(13 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 6 + 10\cdot 23 + 13\cdot 23^{2} + 17\cdot 23^{3} + 13\cdot 23^{4} + 12\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 + 22\cdot 23 + 7\cdot 23^{2} + 20\cdot 23^{3} + 15\cdot 23^{4} + 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(3,5)(4,6)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)$$-2$
$3$$2$$(3,5)(4,6)$$0$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$2$$3$$(1,3,5)(2,4,6)$$-1$
$2$$6$$(1,4,5,2,3,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.