Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 20 a + 21 + \left(8 a + 4\right)\cdot 23 + \left(20 a + 13\right)\cdot 23^{2} + \left(22 a + 7\right)\cdot 23^{3} + \left(10 a + 10\right)\cdot 23^{4} + \left(2 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a + 20 + \left(a + 17\right)\cdot 23 + \left(7 a + 22\right)\cdot 23^{2} + \left(20 a + 12\right)\cdot 23^{3} + \left(22 a + 8\right)\cdot 23^{4} + \left(9 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 a + 15 + \left(14 a + 2\right)\cdot 23 + \left(2 a + 22\right)\cdot 23^{2} + 9\cdot 23^{3} + \left(12 a + 9\right)\cdot 23^{4} + \left(20 a + 14\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 a + 17 + \left(21 a + 10\right)\cdot 23 + \left(15 a + 12\right)\cdot 23^{2} + 2 a\cdot 23^{3} + 11\cdot 23^{4} + \left(13 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 + 10\cdot 23 + 13\cdot 23^{2} + 17\cdot 23^{3} + 13\cdot 23^{4} + 12\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 14 + 22\cdot 23 + 7\cdot 23^{2} + 20\cdot 23^{3} + 15\cdot 23^{4} + 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(3,5)(4,6)$ |
| $(1,3,5)(2,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-2$ |
| $3$ | $2$ | $(3,5)(4,6)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,4,5,2,3,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.