Properties

Label 2.2e2_11_41.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 2^{2} \cdot 11 \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1804= 2^{2} \cdot 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 7 x^{7} - 13 x^{6} + 16 x^{5} - 42 x^{4} + 40 x^{3} - 40 x^{2} + 48 x - 36 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.11_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 6 a^{2} + 7 a + 11 + \left(8 a^{2} + 6 a + 7\right)\cdot 13 + \left(4 a^{2} + 10\right)\cdot 13^{2} + \left(5 a^{2} + 7\right)\cdot 13^{3} + \left(10 a^{2} + 3 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 1 + \left(4 a^{2} + 8 a + 11\right)\cdot 13 + \left(8 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(10 a^{2} + 3\right)\cdot 13^{3} + \left(12 a^{2} + 6 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a^{2} + 4 a + 3 + \left(6 a^{2} + 11\right)\cdot 13 + \left(6 a^{2} + 11 a + 9\right)\cdot 13^{2} + \left(5 a^{2} + 6 a + 12\right)\cdot 13^{3} + \left(7 a^{2} + 7 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 2 a + 8 + \left(5 a^{2} + 10 a + 12\right)\cdot 13 + \left(9 a^{2} + 5 a + 3\right)\cdot 13^{2} + \left(11 a^{2} + 4 a + 3\right)\cdot 13^{3} + \left(8 a^{2} + 7 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + a + 4 + \left(4 a^{2} + 8 a + 12\right)\cdot 13 + \left(5 a^{2} + 5\right)\cdot 13^{2} + \left(4 a^{2} + 4 a + 8\right)\cdot 13^{3} + \left(a^{2} + 11 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 3 + \left(12 a^{2} + 9 a + 8\right)\cdot 13 + \left(11 a^{2} + 6 a + 11\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 3\right)\cdot 13^{3} + \left(6 a^{2} + 2 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 5 a + 8 + \left(6 a^{2} + a + 10\right)\cdot 13 + \left(a^{2} + 9 a + 11\right)\cdot 13^{2} + \left(3 a^{2} + 4 a\right)\cdot 13^{3} + \left(8 a^{2} + a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 4 a + 11 + \left(4 a^{2} + 9 a + 6\right)\cdot 13 + \left(12 a^{2} + 2 a + 6\right)\cdot 13^{2} + \left(10 a^{2} + 8 a + 8\right)\cdot 13^{3} + \left(11 a^{2} + 8 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 4 a + 6 + \left(12 a^{2} + 11 a + 10\right)\cdot 13 + \left(4 a^{2} + 5 a + 7\right)\cdot 13^{2} + \left(4 a^{2} + a + 2\right)\cdot 13^{3} + \left(10 a^{2} + 4 a + 12\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8)(2,6)(3,7)(4,5)$
$(1,6,4)(2,8,5)(3,9,7)$
$(1,5,7,6,2,3,4,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,8)(2,6)(3,7)(4,5)$$0$
$2$$3$$(1,6,4)(2,8,5)(3,9,7)$$-1$
$2$$9$$(1,5,7,6,2,3,4,8,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,7,2,4,9,5,6,3,8)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,2,9,6,8,7,4,5,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.