Properties

Label 2.2e2_11_31.7t2.1c1
Dimension 2
Group $D_{7}$
Conductor $ 2^{2} \cdot 11 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$1364= 2^{2} \cdot 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 4 x^{5} + 2 x^{4} - 3 x^{3} - 8 x^{2} - 6 x - 4 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.2e2_11_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 32 + \left(8 a + 3\right)\cdot 37 + \left(27 a + 31\right)\cdot 37^{2} + \left(9 a + 4\right)\cdot 37^{3} + \left(2 a + 21\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 27\cdot 37 + 11\cdot 37^{2} + 24\cdot 37^{3} + 16\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 3 + \left(6 a + 27\right)\cdot 37 + \left(a + 7\right)\cdot 37^{2} + \left(22 a + 7\right)\cdot 37^{3} + \left(18 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 1 + \left(30 a + 35\right)\cdot 37 + \left(35 a + 5\right)\cdot 37^{2} + \left(14 a + 20\right)\cdot 37^{3} + \left(18 a + 2\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 28 + 4\cdot 37 + 27 a\cdot 37^{2} + \left(12 a + 7\right)\cdot 37^{3} + \left(14 a + 9\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 21 + \left(36 a + 18\right)\cdot 37 + \left(9 a + 33\right)\cdot 37^{2} + \left(24 a + 30\right)\cdot 37^{3} + \left(22 a + 16\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 32 a + 15 + \left(28 a + 31\right)\cdot 37 + \left(9 a + 20\right)\cdot 37^{2} + \left(27 a + 16\right)\cdot 37^{3} + \left(34 a + 20\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6)(2,7)(4,5)$
$(1,3)(2,4)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,3)(2,4)(6,7)$$0$
$2$$7$$(1,3,6,2,5,4,7)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,6,5,7,3,2,4)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,2,7,6,4,3,5)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
The blue line marks the conjugacy class containing complex conjugation.