Properties

Label 2.2e2_11_19e2.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 11 \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$15884= 2^{2} \cdot 11 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 14 x^{4} - 133 x^{3} + 600 x^{2} - 1309 x + 1323 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.11_19.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 18 + \left(16 a + 8\right)\cdot 83 + \left(63 a + 59\right)\cdot 83^{2} + \left(71 a + 78\right)\cdot 83^{3} + \left(50 a + 3\right)\cdot 83^{4} + \left(2 a + 11\right)\cdot 83^{5} + \left(78 a + 1\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 19 + \left(4 a + 2\right)\cdot 83 + \left(68 a + 45\right)\cdot 83^{2} + \left(22 a + 14\right)\cdot 83^{3} + \left(76 a + 18\right)\cdot 83^{4} + \left(23 a + 44\right)\cdot 83^{5} + \left(56 a + 76\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 75 a + 20 + \left(30 a + 73\right)\cdot 83 + \left(30 a + 6\right)\cdot 83^{2} + \left(48 a + 82\right)\cdot 83^{3} + \left(7 a + 64\right)\cdot 83^{4} + \left(53 a + 13\right)\cdot 83^{5} + \left(62 a + 71\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 12 + \left(52 a + 29\right)\cdot 83 + \left(52 a + 6\right)\cdot 83^{2} + \left(34 a + 17\right)\cdot 83^{3} + \left(75 a + 24\right)\cdot 83^{4} + \left(29 a + 59\right)\cdot 83^{5} + \left(20 a + 80\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 56 + \left(66 a + 69\right)\cdot 83 + \left(19 a + 22\right)\cdot 83^{2} + \left(11 a + 4\right)\cdot 83^{3} + \left(32 a + 66\right)\cdot 83^{4} + \left(80 a + 45\right)\cdot 83^{5} + \left(4 a + 76\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 60 a + 42 + \left(78 a + 66\right)\cdot 83 + \left(14 a + 25\right)\cdot 83^{2} + \left(60 a + 52\right)\cdot 83^{3} + \left(6 a + 71\right)\cdot 83^{4} + \left(59 a + 74\right)\cdot 83^{5} + \left(26 a + 25\right)\cdot 83^{6} +O\left(83^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,6)$
$(2,4,5)$
$(1,2,6,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$1$$3$$(1,6,3)(2,4,5)$$2 \zeta_{3}$
$1$$3$$(1,3,6)(2,5,4)$$-2 \zeta_{3} - 2$
$2$$3$$(1,3,6)$$-\zeta_{3}$
$2$$3$$(1,6,3)$$\zeta_{3} + 1$
$2$$3$$(1,3,6)(2,4,5)$$-1$
$3$$6$$(1,2,6,4,3,5)$$0$
$3$$6$$(1,5,3,4,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.