Properties

Label 2.2e2_11_13e2.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 11 \cdot 13^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$7436= 2^{2} \cdot 11 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 10 x^{4} - 45 x^{3} + 220 x^{2} + 127 x + 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.11_13.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 60 a + 50 + \left(18 a + 23\right)\cdot 73 + \left(20 a + 32\right)\cdot 73^{2} + \left(10 a + 44\right)\cdot 73^{3} + \left(29 a + 28\right)\cdot 73^{4} + \left(53 a + 5\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 18 + \left(68 a + 13\right)\cdot 73 + \left(69 a + 58\right)\cdot 73^{2} + \left(32 a + 20\right)\cdot 73^{3} + \left(46 a + 4\right)\cdot 73^{4} + \left(24 a + 9\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 2 + \left(62 a + 56\right)\cdot 73 + \left(17 a + 4\right)\cdot 73^{2} + \left(58 a + 19\right)\cdot 73^{3} + \left(27 a + 45\right)\cdot 73^{4} + \left(13 a + 9\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 11 + \left(54 a + 20\right)\cdot 73 + \left(52 a + 1\right)\cdot 73^{2} + \left(62 a + 55\right)\cdot 73^{3} + \left(43 a + 32\right)\cdot 73^{4} + \left(19 a + 63\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 48 a + 20 + \left(4 a + 47\right)\cdot 73 + \left(3 a + 53\right)\cdot 73^{2} + \left(40 a + 49\right)\cdot 73^{3} + \left(26 a + 37\right)\cdot 73^{4} + \left(48 a + 36\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 46 + \left(10 a + 58\right)\cdot 73 + \left(55 a + 68\right)\cdot 73^{2} + \left(14 a + 29\right)\cdot 73^{3} + \left(45 a + 70\right)\cdot 73^{4} + \left(59 a + 21\right)\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3)(2,4,6)$
$(1,4,3,6,5,2)$
$(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$1$$3$$(1,3,5)(2,4,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,3)(2,6,4)$$2 \zeta_{3}$
$2$$3$$(1,5,3)(2,4,6)$$-1$
$2$$3$$(2,6,4)$$\zeta_{3} + 1$
$2$$3$$(2,4,6)$$-\zeta_{3}$
$3$$6$$(1,4,3,6,5,2)$$0$
$3$$6$$(1,2,5,6,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.