Properties

Label 2.2e2_113.8t6.1c1
Dimension 2
Group $D_{8}$
Conductor $ 2^{2} \cdot 113 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$452= 2^{2} \cdot 113 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} - 10 x^{5} + 3 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e2_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 34\cdot 149 + 145\cdot 149^{2} + 97\cdot 149^{3} + 142\cdot 149^{4} + 82\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 64\cdot 149 + 14\cdot 149^{2} + 18\cdot 149^{3} + 111\cdot 149^{4} + 131\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 56\cdot 149 + 133\cdot 149^{2} + 127\cdot 149^{3} + 56\cdot 149^{4} + 50\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 + 115\cdot 149 + 57\cdot 149^{2} + 51\cdot 149^{3} + 7\cdot 149^{4} + 79\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 22 + 67\cdot 149 + 111\cdot 149^{2} + 38\cdot 149^{3} + 69\cdot 149^{4} + 69\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 50 + 39\cdot 149 + 11\cdot 149^{2} + 136\cdot 149^{3} + 95\cdot 149^{4} + 66\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 86 + 41\cdot 149 + 45\cdot 149^{2} + 99\cdot 149^{3} + 48\cdot 149^{4} + 79\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 101 + 29\cdot 149 + 77\cdot 149^{2} + 26\cdot 149^{3} + 64\cdot 149^{4} + 36\cdot 149^{5} +O\left(149^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(4,6)(5,7)$
$(1,8,5,7)(2,6,3,4)$
$(1,5)(2,3)(4,6)(7,8)$
$(1,6,7,2,5,4,8,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)(7,8)$$-2$
$4$$2$$(1,8)(4,6)(5,7)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,7,5,8)(2,4,3,6)$$0$
$2$$8$$(1,6,7,2,5,4,8,3)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,2,8,6,5,3,7,4)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.