Properties

Label 2.2e2_113.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 113 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$452= 2^{2} \cdot 113 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 5 x^{4} - 6 x^{3} + 14 x^{2} - 8 x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 112 + 36\cdot 509 + 215\cdot 509^{2} + 422\cdot 509^{3} + 67\cdot 509^{4} + 213\cdot 509^{5} + 314\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 119 + 26\cdot 509 + 469\cdot 509^{2} + 197\cdot 509^{3} + 54\cdot 509^{4} + 497\cdot 509^{5} + 465\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 183 + 295\cdot 509 + 444\cdot 509^{2} + 421\cdot 509^{3} + 18\cdot 509^{4} + 172\cdot 509^{5} + 353\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 190 + 285\cdot 509 + 189\cdot 509^{2} + 197\cdot 509^{3} + 5\cdot 509^{4} + 456\cdot 509^{5} + 504\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 249 + 109\cdot 509 + 25\cdot 509^{2} + 272\cdot 509^{3} + 482\cdot 509^{4} + 102\cdot 509^{5} + 61\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 334 + 74\cdot 509 + 407\cdot 509^{2} + 140\cdot 509^{3} + 81\cdot 509^{4} + 115\cdot 509^{5} + 497\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 384 + 112\cdot 509 + 206\cdot 509^{2} + 257\cdot 509^{3} + 354\cdot 509^{4} + 233\cdot 509^{5} + 210\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 469 + 77\cdot 509 + 79\cdot 509^{2} + 126\cdot 509^{3} + 462\cdot 509^{4} + 245\cdot 509^{5} + 137\cdot 509^{6} +O\left(509^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,7,4,6)(2,8,3,5)$
$(1,3,4,2)$
$(1,4)(2,3)$
$(1,2,4,3)(5,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,4)(2,3)$ $0$ $0$
$4$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$ $0$
$1$ $4$ $(1,2,4,3)(5,7,8,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,3,4,2)(5,6,8,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$ $0$
$2$ $4$ $(1,3,4,2)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,2,4,3)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,2,4,3)(5,8)(6,7)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,3,4,2)(5,8)(6,7)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,7,4,6)(2,8,3,5)$ $0$ $0$
$4$ $8$ $(1,7,2,8,4,6,3,5)$ $0$ $0$
$4$ $8$ $(1,8,3,7,4,5,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.