Properties

Label 2.2e10_7.8t8.4
Dimension 2
Group $QD_{16}$
Conductor $ 2^{10} \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$7168= 2^{10} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 16 x^{6} + 80 x^{4} + 128 x^{2} + 56 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 33 + 114\cdot 223 + 106\cdot 223^{2} + 119\cdot 223^{3} + 96\cdot 223^{4} + 62\cdot 223^{5} + 75\cdot 223^{6} + 216\cdot 223^{7} + 143\cdot 223^{8} + 181\cdot 223^{9} + 148\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 45 + 55\cdot 223 + 93\cdot 223^{2} + 27\cdot 223^{3} + 36\cdot 223^{4} + 136\cdot 223^{5} + 168\cdot 223^{6} + 92\cdot 223^{7} + 38\cdot 223^{8} + 199\cdot 223^{9} + 94\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 84 + 158\cdot 223 + 53\cdot 223^{2} + 206\cdot 223^{3} + 215\cdot 223^{4} + 150\cdot 223^{5} + 34\cdot 223^{6} + 212\cdot 223^{7} + 70\cdot 223^{8} + 132\cdot 223^{9} + 175\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 90 + 204\cdot 223 + 144\cdot 223^{2} + 139\cdot 223^{3} + 13\cdot 223^{4} + 112\cdot 223^{5} + 76\cdot 223^{6} + 116\cdot 223^{7} + 152\cdot 223^{8} + 112\cdot 223^{9} + 140\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 133 + 18\cdot 223 + 78\cdot 223^{2} + 83\cdot 223^{3} + 209\cdot 223^{4} + 110\cdot 223^{5} + 146\cdot 223^{6} + 106\cdot 223^{7} + 70\cdot 223^{8} + 110\cdot 223^{9} + 82\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 139 + 64\cdot 223 + 169\cdot 223^{2} + 16\cdot 223^{3} + 7\cdot 223^{4} + 72\cdot 223^{5} + 188\cdot 223^{6} + 10\cdot 223^{7} + 152\cdot 223^{8} + 90\cdot 223^{9} + 47\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 178 + 167\cdot 223 + 129\cdot 223^{2} + 195\cdot 223^{3} + 186\cdot 223^{4} + 86\cdot 223^{5} + 54\cdot 223^{6} + 130\cdot 223^{7} + 184\cdot 223^{8} + 23\cdot 223^{9} + 128\cdot 223^{10} +O\left(223^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 190 + 108\cdot 223 + 116\cdot 223^{2} + 103\cdot 223^{3} + 126\cdot 223^{4} + 160\cdot 223^{5} + 147\cdot 223^{6} + 6\cdot 223^{7} + 79\cdot 223^{8} + 41\cdot 223^{9} + 74\cdot 223^{10} +O\left(223^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2)(4,5)(7,8)$
$(1,7,8,2)(3,4,6,5)$
$(1,3,7,4,8,6,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,3,7,4,8,6,2,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,6,7,5,8,3,2,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.