Properties

Label 2.2e10_7.8t7.3c1
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{10} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$7168= 2^{10} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} - 92 x^{4} + 112 x^{2} + 98 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.2e4_7.4t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 2 + 42\cdot 79 + 12\cdot 79^{2} + 54\cdot 79^{3} + 27\cdot 79^{4} + 6\cdot 79^{5} + 68\cdot 79^{6} + 67\cdot 79^{7} + 77\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 8 + 18\cdot 79 + 48\cdot 79^{2} + 67\cdot 79^{3} + 36\cdot 79^{4} + 24\cdot 79^{5} + 17\cdot 79^{6} + 18\cdot 79^{7} + 64\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 29 + 26\cdot 79 + 54\cdot 79^{2} + 52\cdot 79^{3} + 56\cdot 79^{4} + 13\cdot 79^{5} + 63\cdot 79^{6} + 35\cdot 79^{7} + 72\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 30 + 63\cdot 79 + 13\cdot 79^{2} + 79^{3} + 31\cdot 79^{4} + 24\cdot 79^{5} + 79^{6} + 62\cdot 79^{7} + 77\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 49 + 15\cdot 79 + 65\cdot 79^{2} + 77\cdot 79^{3} + 47\cdot 79^{4} + 54\cdot 79^{5} + 77\cdot 79^{6} + 16\cdot 79^{7} + 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 50 + 52\cdot 79 + 24\cdot 79^{2} + 26\cdot 79^{3} + 22\cdot 79^{4} + 65\cdot 79^{5} + 15\cdot 79^{6} + 43\cdot 79^{7} + 6\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 71 + 60\cdot 79 + 30\cdot 79^{2} + 11\cdot 79^{3} + 42\cdot 79^{4} + 54\cdot 79^{5} + 61\cdot 79^{6} + 60\cdot 79^{7} + 14\cdot 79^{8} +O\left(79^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 77 + 36\cdot 79 + 66\cdot 79^{2} + 24\cdot 79^{3} + 51\cdot 79^{4} + 72\cdot 79^{5} + 10\cdot 79^{6} + 11\cdot 79^{7} + 79^{8} +O\left(79^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,7,5,8,3,2,4)$
$(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(3,6)(4,5)$$0$
$1$$4$$(1,7,8,2)(3,4,6,5)$$2 \zeta_{4}$
$1$$4$$(1,2,8,7)(3,5,6,4)$$-2 \zeta_{4}$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,6,7,5,8,3,2,4)$$0$
$2$$8$$(1,5,2,6,8,4,7,3)$$0$
$2$$8$$(1,3,2,5,8,6,7,4)$$0$
$2$$8$$(1,5,7,3,8,4,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.