Properties

Label 2.2e10_7.8t7.2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{10} \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$7168= 2^{10} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} - 92 x^{4} - 112 x^{2} + 98 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 86\cdot 113 + 65\cdot 113^{2} + 112\cdot 113^{3} + 30\cdot 113^{4} + 18\cdot 113^{5} + 71\cdot 113^{6} + 12\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 32 + 15\cdot 113 + 28\cdot 113^{2} + 98\cdot 113^{3} + 106\cdot 113^{4} + 80\cdot 113^{5} + 60\cdot 113^{6} + 9\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 33 + 109\cdot 113 + 81\cdot 113^{2} + 92\cdot 113^{3} + 111\cdot 113^{4} + 34\cdot 113^{5} + 13\cdot 113^{6} + 111\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 43 + 46\cdot 113 + 82\cdot 113^{2} + 73\cdot 113^{3} + 34\cdot 113^{4} + 21\cdot 113^{5} + 46\cdot 113^{6} + 82\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 70 + 66\cdot 113 + 30\cdot 113^{2} + 39\cdot 113^{3} + 78\cdot 113^{4} + 91\cdot 113^{5} + 66\cdot 113^{6} + 30\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 80 + 3\cdot 113 + 31\cdot 113^{2} + 20\cdot 113^{3} + 113^{4} + 78\cdot 113^{5} + 99\cdot 113^{6} + 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 81 + 97\cdot 113 + 84\cdot 113^{2} + 14\cdot 113^{3} + 6\cdot 113^{4} + 32\cdot 113^{5} + 52\cdot 113^{6} + 103\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 112 + 26\cdot 113 + 47\cdot 113^{2} + 82\cdot 113^{4} + 94\cdot 113^{5} + 41\cdot 113^{6} + 100\cdot 113^{7} +O\left(113^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(2,7)(4,5)$
$(1,2,3,5,8,7,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(2,7)(4,5)$ $0$ $0$
$1$ $4$ $(1,3,8,6)(2,5,7,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,6,8,3)(2,4,7,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,2,3,5,8,7,6,4)$ $0$ $0$
$2$ $8$ $(1,5,6,2,8,4,3,7)$ $0$ $0$
$2$ $8$ $(1,5,3,7,8,4,6,2)$ $0$ $0$
$2$ $8$ $(1,7,6,5,8,2,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.