Properties

Label 2.2e10_3e2.8t8.8c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{10} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$9216= 2^{10} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 24 x^{4} - 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 15.
Roots:
$r_{ 1 }$ $=$ $ 1 + 28\cdot 29 + 2\cdot 29^{2} + 27\cdot 29^{3} + 6\cdot 29^{4} + 20\cdot 29^{5} + 19\cdot 29^{6} + 2\cdot 29^{7} + 2\cdot 29^{8} + 15\cdot 29^{9} + 26\cdot 29^{10} + 11\cdot 29^{11} + 4\cdot 29^{12} + 24\cdot 29^{13} + 17\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 3 + 7\cdot 29 + 10\cdot 29^{2} + 27\cdot 29^{3} + 20\cdot 29^{4} + 13\cdot 29^{5} + 6\cdot 29^{6} + 11\cdot 29^{7} + 11\cdot 29^{8} + 8\cdot 29^{9} + 25\cdot 29^{10} + 21\cdot 29^{11} + 8\cdot 29^{12} + 28\cdot 29^{13} + 9\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 7 + 29 + 21\cdot 29^{2} + 20\cdot 29^{3} + 27\cdot 29^{4} + 3\cdot 29^{5} + 17\cdot 29^{6} + 25\cdot 29^{7} + 8\cdot 29^{8} + 20\cdot 29^{9} + 21\cdot 29^{10} + 28\cdot 29^{11} + 8\cdot 29^{12} + 16\cdot 29^{13} + 24\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 12 + 18\cdot 29 + 17\cdot 29^{2} + 27\cdot 29^{3} + 17\cdot 29^{4} + 25\cdot 29^{5} + 13\cdot 29^{6} + 13\cdot 29^{7} + 23\cdot 29^{8} + 9\cdot 29^{9} + 6\cdot 29^{10} + 9\cdot 29^{12} + 4\cdot 29^{13} + 17\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 17 + 10\cdot 29 + 11\cdot 29^{2} + 29^{3} + 11\cdot 29^{4} + 3\cdot 29^{5} + 15\cdot 29^{6} + 15\cdot 29^{7} + 5\cdot 29^{8} + 19\cdot 29^{9} + 22\cdot 29^{10} + 28\cdot 29^{11} + 19\cdot 29^{12} + 24\cdot 29^{13} + 11\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 22 + 27\cdot 29 + 7\cdot 29^{2} + 8\cdot 29^{3} + 29^{4} + 25\cdot 29^{5} + 11\cdot 29^{6} + 3\cdot 29^{7} + 20\cdot 29^{8} + 8\cdot 29^{9} + 7\cdot 29^{10} + 20\cdot 29^{12} + 12\cdot 29^{13} + 4\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 26 + 21\cdot 29 + 18\cdot 29^{2} + 29^{3} + 8\cdot 29^{4} + 15\cdot 29^{5} + 22\cdot 29^{6} + 17\cdot 29^{7} + 17\cdot 29^{8} + 20\cdot 29^{9} + 3\cdot 29^{10} + 7\cdot 29^{11} + 20\cdot 29^{12} + 19\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 28 + 26\cdot 29^{2} + 29^{3} + 22\cdot 29^{4} + 8\cdot 29^{5} + 9\cdot 29^{6} + 26\cdot 29^{7} + 26\cdot 29^{8} + 13\cdot 29^{9} + 2\cdot 29^{10} + 17\cdot 29^{11} + 24\cdot 29^{12} + 4\cdot 29^{13} + 11\cdot 29^{14} +O\left(29^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(5,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,2,4,3,8,7,5,6)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,4,6,8,2,5,3)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.