Properties

Label 2.2e10_3e2.8t8.7c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{10} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$9216= 2^{10} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 18 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 4 + 8\cdot 41 + 32\cdot 41^{2} + 40\cdot 41^{3} + 13\cdot 41^{4} + 31\cdot 41^{5} + 2\cdot 41^{6} + 28\cdot 41^{7} + 28\cdot 41^{8} + 38\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 5 + 14\cdot 41 + 34\cdot 41^{2} + 4\cdot 41^{3} + 24\cdot 41^{4} + 10\cdot 41^{5} + 7\cdot 41^{6} + 8\cdot 41^{7} + 25\cdot 41^{8} + 16\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 12 + 30\cdot 41 + 13\cdot 41^{2} + 2\cdot 41^{3} + 29\cdot 41^{4} + 40\cdot 41^{5} + 14\cdot 41^{6} + 41^{7} + 34\cdot 41^{8} + 32\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 15 + 29\cdot 41 + 15\cdot 41^{2} + 37\cdot 41^{3} + 17\cdot 41^{4} + 32\cdot 41^{5} + 18\cdot 41^{6} + 2\cdot 41^{7} + 14\cdot 41^{8} +O\left(41^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 26 + 11\cdot 41 + 25\cdot 41^{2} + 3\cdot 41^{3} + 23\cdot 41^{4} + 8\cdot 41^{5} + 22\cdot 41^{6} + 38\cdot 41^{7} + 26\cdot 41^{8} + 40\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 29 + 10\cdot 41 + 27\cdot 41^{2} + 38\cdot 41^{3} + 11\cdot 41^{4} + 26\cdot 41^{6} + 39\cdot 41^{7} + 6\cdot 41^{8} + 8\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 36 + 26\cdot 41 + 6\cdot 41^{2} + 36\cdot 41^{3} + 16\cdot 41^{4} + 30\cdot 41^{5} + 33\cdot 41^{6} + 32\cdot 41^{7} + 15\cdot 41^{8} + 24\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 37 + 32\cdot 41 + 8\cdot 41^{2} + 27\cdot 41^{4} + 9\cdot 41^{5} + 38\cdot 41^{6} + 12\cdot 41^{7} + 12\cdot 41^{8} + 2\cdot 41^{9} +O\left(41^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,7,8,2)(3,5,6,4)$
$(2,7)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$8$$(1,5,7,6,8,4,2,3)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,4,7,3,8,5,2,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.