Properties

Label 2.2e10_3e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{10} \cdot 3^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$9216= 2^{10} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 162 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 12 + 29\cdot 73 + 15\cdot 73^{2} + 35\cdot 73^{3} + 36\cdot 73^{4} + 42\cdot 73^{5} + 23\cdot 73^{6} + 73^{7} + 38\cdot 73^{8} + 48\cdot 73^{9} + 6\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 26 + 51\cdot 73 + 36\cdot 73^{2} + 39\cdot 73^{3} + 57\cdot 73^{4} + 11\cdot 73^{5} + 38\cdot 73^{6} + 4\cdot 73^{7} + 39\cdot 73^{8} + 66\cdot 73^{9} + 60\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 28 + 67\cdot 73 + 60\cdot 73^{2} + 41\cdot 73^{3} + 2\cdot 73^{4} + 10\cdot 73^{5} + 43\cdot 73^{6} + 26\cdot 73^{7} + 61\cdot 73^{8} + 30\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 32 + 71\cdot 73 + 4\cdot 73^{2} + 36\cdot 73^{3} + 15\cdot 73^{4} + 54\cdot 73^{5} + 15\cdot 73^{6} + 42\cdot 73^{7} + 62\cdot 73^{8} + 15\cdot 73^{9} +O\left(73^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 41 + 73 + 68\cdot 73^{2} + 36\cdot 73^{3} + 57\cdot 73^{4} + 18\cdot 73^{5} + 57\cdot 73^{6} + 30\cdot 73^{7} + 10\cdot 73^{8} + 57\cdot 73^{9} + 72\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 45 + 5\cdot 73 + 12\cdot 73^{2} + 31\cdot 73^{3} + 70\cdot 73^{4} + 62\cdot 73^{5} + 29\cdot 73^{6} + 46\cdot 73^{7} + 11\cdot 73^{8} + 72\cdot 73^{9} + 42\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 47 + 21\cdot 73 + 36\cdot 73^{2} + 33\cdot 73^{3} + 15\cdot 73^{4} + 61\cdot 73^{5} + 34\cdot 73^{6} + 68\cdot 73^{7} + 33\cdot 73^{8} + 6\cdot 73^{9} + 12\cdot 73^{10} +O\left(73^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 61 + 43\cdot 73 + 57\cdot 73^{2} + 37\cdot 73^{3} + 36\cdot 73^{4} + 30\cdot 73^{5} + 49\cdot 73^{6} + 71\cdot 73^{7} + 34\cdot 73^{8} + 24\cdot 73^{9} + 66\cdot 73^{10} +O\left(73^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3,8,6)(2,4,7,5)$
$(2,3)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(2,3)(4,5)(6,7)$ $0$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$4$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$ $0$
$2$ $8$ $(1,2,5,3,8,7,4,6)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,7,5,6,8,2,4,3)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.