Properties

Label 2.2e10.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{10}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$1024= 2^{10} $
Artin number field: Splitting field of $f= x^{8} - 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 5 + 57\cdot 73 + 16\cdot 73^{2} + 6\cdot 73^{3} + 3\cdot 73^{4} + 10\cdot 73^{5} + 61\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 11 + 47\cdot 73 + 29\cdot 73^{2} + 52\cdot 73^{3} + 27\cdot 73^{4} + 36\cdot 73^{5} + 30\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 + 16\cdot 73 + 43\cdot 73^{2} + 25\cdot 73^{3} + 66\cdot 73^{4} + 8\cdot 73^{5} + 58\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 36 + 31\cdot 73 + 24\cdot 73^{2} + 67\cdot 73^{3} + 25\cdot 73^{4} + 2\cdot 73^{5} + 60\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 37 + 41\cdot 73 + 48\cdot 73^{2} + 5\cdot 73^{3} + 47\cdot 73^{4} + 70\cdot 73^{5} + 12\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 50 + 56\cdot 73 + 29\cdot 73^{2} + 47\cdot 73^{3} + 6\cdot 73^{4} + 64\cdot 73^{5} + 14\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 62 + 25\cdot 73 + 43\cdot 73^{2} + 20\cdot 73^{3} + 45\cdot 73^{4} + 36\cdot 73^{5} + 42\cdot 73^{6} +O\left(73^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 68 + 15\cdot 73 + 56\cdot 73^{2} + 66\cdot 73^{3} + 69\cdot 73^{4} + 62\cdot 73^{5} + 11\cdot 73^{6} +O\left(73^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,7)(2,8)(4,5)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$8$$(1,6,2,5,8,3,7,4)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,2,4,8,6,7,5)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.