Properties

Label 2.2e10.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{10}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$1024= 2^{10} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} - 12 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 3 + 28\cdot 241 + 137\cdot 241^{2} + 157\cdot 241^{3} + 222\cdot 241^{4} + 164\cdot 241^{5} + 231\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 18 + 215\cdot 241 + 191\cdot 241^{2} + 140\cdot 241^{3} + 193\cdot 241^{4} + 186\cdot 241^{5} + 71\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 40 + 134\cdot 241 + 12\cdot 241^{2} + 143\cdot 241^{3} + 38\cdot 241^{4} + 113\cdot 241^{5} + 15\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 56 + 25\cdot 241 + 27\cdot 241^{2} + 133\cdot 241^{3} + 97\cdot 241^{4} + 70\cdot 241^{5} + 223\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 185 + 215\cdot 241 + 213\cdot 241^{2} + 107\cdot 241^{3} + 143\cdot 241^{4} + 170\cdot 241^{5} + 17\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 201 + 106\cdot 241 + 228\cdot 241^{2} + 97\cdot 241^{3} + 202\cdot 241^{4} + 127\cdot 241^{5} + 225\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 223 + 25\cdot 241 + 49\cdot 241^{2} + 100\cdot 241^{3} + 47\cdot 241^{4} + 54\cdot 241^{5} + 169\cdot 241^{6} +O\left(241^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 238 + 212\cdot 241 + 103\cdot 241^{2} + 83\cdot 241^{3} + 18\cdot 241^{4} + 76\cdot 241^{5} + 9\cdot 241^{6} +O\left(241^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(3,6)(4,5)$
$(1,4,2,3,8,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,4,2,3,8,5,7,6)$ $0$ $0$
$2$ $8$ $(1,3,7,4,8,6,2,5)$ $0$ $0$
$2$ $8$ $(1,3,2,5,8,6,7,4)$ $0$ $0$
$2$ $8$ $(1,5,7,3,8,4,2,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.