Properties

Label 2.278784.8t5.f.a
Dimension $2$
Group $Q_8$
Conductor $278784$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(278784\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 11^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.21667237072994304.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{6}, \sqrt{11})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 132x^{6} + 4356x^{4} + 30492x^{2} + 27225 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 4 + 31\cdot 53 + 36\cdot 53^{2} + 16\cdot 53^{3} + 8\cdot 53^{4} + 43\cdot 53^{5} + 12\cdot 53^{6} + 34\cdot 53^{7} + 25\cdot 53^{8} + 32\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 39\cdot 53 + 47\cdot 53^{2} + 17\cdot 53^{3} + 32\cdot 53^{4} + 34\cdot 53^{5} + 3\cdot 53^{6} + 43\cdot 53^{7} + 52\cdot 53^{8} + 13\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 7\cdot 53 + 3\cdot 53^{2} + 35\cdot 53^{3} + 46\cdot 53^{4} + 14\cdot 53^{5} + 3\cdot 53^{6} + 22\cdot 53^{7} + 36\cdot 53^{8} + 39\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 3\cdot 53 + 45\cdot 53^{2} + 40\cdot 53^{3} + 37\cdot 53^{4} + 43\cdot 53^{5} + 48\cdot 53^{6} + 19\cdot 53^{7} + 36\cdot 53^{8} + 34\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 33 + 49\cdot 53 + 7\cdot 53^{2} + 12\cdot 53^{3} + 15\cdot 53^{4} + 9\cdot 53^{5} + 4\cdot 53^{6} + 33\cdot 53^{7} + 16\cdot 53^{8} + 18\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 40 + 45\cdot 53 + 49\cdot 53^{2} + 17\cdot 53^{3} + 6\cdot 53^{4} + 38\cdot 53^{5} + 49\cdot 53^{6} + 30\cdot 53^{7} + 16\cdot 53^{8} + 13\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 48 + 13\cdot 53 + 5\cdot 53^{2} + 35\cdot 53^{3} + 20\cdot 53^{4} + 18\cdot 53^{5} + 49\cdot 53^{6} + 9\cdot 53^{7} + 39\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 49 + 21\cdot 53 + 16\cdot 53^{2} + 36\cdot 53^{3} + 44\cdot 53^{4} + 9\cdot 53^{5} + 40\cdot 53^{6} + 18\cdot 53^{7} + 27\cdot 53^{8} + 20\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$