Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(278784\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 11^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $1$ |
Artin field: | Galois closure of 8.8.21667237072994304.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{6}, \sqrt{11})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 132x^{6} + 4356x^{4} - 30492x^{2} + 27225 \) . |
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 10.
Roots:
$r_{ 1 }$ | $=$ | \( 9 + 43\cdot 53 + 21\cdot 53^{2} + 6\cdot 53^{3} + 21\cdot 53^{4} + 46\cdot 53^{5} + 40\cdot 53^{6} + 4\cdot 53^{7} + 52\cdot 53^{8} + 50\cdot 53^{9} +O(53^{10})\) |
$r_{ 2 }$ | $=$ | \( 14 + 44\cdot 53 + 31\cdot 53^{2} + 37\cdot 53^{3} + 30\cdot 53^{4} + 5\cdot 53^{5} + 14\cdot 53^{6} + 47\cdot 53^{7} + 42\cdot 53^{8} + 8\cdot 53^{9} +O(53^{10})\) |
$r_{ 3 }$ | $=$ | \( 17 + 7\cdot 53 + 34\cdot 53^{2} + 40\cdot 53^{3} + 15\cdot 53^{4} + 24\cdot 53^{6} + 4\cdot 53^{7} + 45\cdot 53^{8} + 33\cdot 53^{9} +O(53^{10})\) |
$r_{ 4 }$ | $=$ | \( 19 + 34\cdot 53 + 45\cdot 53^{2} + 31\cdot 53^{3} + 10\cdot 53^{4} + 6\cdot 53^{5} + 18\cdot 53^{6} + 34\cdot 53^{7} + 32\cdot 53^{8} + 11\cdot 53^{9} +O(53^{10})\) |
$r_{ 5 }$ | $=$ | \( 34 + 18\cdot 53 + 7\cdot 53^{2} + 21\cdot 53^{3} + 42\cdot 53^{4} + 46\cdot 53^{5} + 34\cdot 53^{6} + 18\cdot 53^{7} + 20\cdot 53^{8} + 41\cdot 53^{9} +O(53^{10})\) |
$r_{ 6 }$ | $=$ | \( 36 + 45\cdot 53 + 18\cdot 53^{2} + 12\cdot 53^{3} + 37\cdot 53^{4} + 52\cdot 53^{5} + 28\cdot 53^{6} + 48\cdot 53^{7} + 7\cdot 53^{8} + 19\cdot 53^{9} +O(53^{10})\) |
$r_{ 7 }$ | $=$ | \( 39 + 8\cdot 53 + 21\cdot 53^{2} + 15\cdot 53^{3} + 22\cdot 53^{4} + 47\cdot 53^{5} + 38\cdot 53^{6} + 5\cdot 53^{7} + 10\cdot 53^{8} + 44\cdot 53^{9} +O(53^{10})\) |
$r_{ 8 }$ | $=$ | \( 44 + 9\cdot 53 + 31\cdot 53^{2} + 46\cdot 53^{3} + 31\cdot 53^{4} + 6\cdot 53^{5} + 12\cdot 53^{6} + 48\cdot 53^{7} + 2\cdot 53^{9} +O(53^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
$2$ | $4$ | $(1,3,8,6)(2,4,7,5)$ | $0$ |
$2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
$2$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.