Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(278784\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 11^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $1$ |
Artin field: | Galois closure of 8.8.5416809268248576.2 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{33})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 132x^{6} + 5346x^{4} - 69696x^{2} + 278784 \) . |
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 10.
Roots:
$r_{ 1 }$ | $=$ | \( 10 + 25\cdot 41 + 41^{2} + 30\cdot 41^{3} + 11\cdot 41^{4} + 34\cdot 41^{5} + 40\cdot 41^{6} + 20\cdot 41^{7} + 26\cdot 41^{9} +O(41^{10})\) |
$r_{ 2 }$ | $=$ | \( 15 + 13\cdot 41 + 4\cdot 41^{2} + 35\cdot 41^{3} + 35\cdot 41^{4} + 35\cdot 41^{5} + 31\cdot 41^{6} + 21\cdot 41^{7} + 21\cdot 41^{8} + 10\cdot 41^{9} +O(41^{10})\) |
$r_{ 3 }$ | $=$ | \( 16 + 13\cdot 41 + 10\cdot 41^{2} + 15\cdot 41^{3} + 22\cdot 41^{4} + 9\cdot 41^{5} + 6\cdot 41^{6} + 25\cdot 41^{7} + 5\cdot 41^{8} + 2\cdot 41^{9} +O(41^{10})\) |
$r_{ 4 }$ | $=$ | \( 17 + 31\cdot 41 + 15\cdot 41^{2} + 38\cdot 41^{3} + 30\cdot 41^{4} + 4\cdot 41^{5} + 39\cdot 41^{6} + 2\cdot 41^{7} + 17\cdot 41^{8} + 36\cdot 41^{9} +O(41^{10})\) |
$r_{ 5 }$ | $=$ | \( 24 + 9\cdot 41 + 25\cdot 41^{2} + 2\cdot 41^{3} + 10\cdot 41^{4} + 36\cdot 41^{5} + 41^{6} + 38\cdot 41^{7} + 23\cdot 41^{8} + 4\cdot 41^{9} +O(41^{10})\) |
$r_{ 6 }$ | $=$ | \( 25 + 27\cdot 41 + 30\cdot 41^{2} + 25\cdot 41^{3} + 18\cdot 41^{4} + 31\cdot 41^{5} + 34\cdot 41^{6} + 15\cdot 41^{7} + 35\cdot 41^{8} + 38\cdot 41^{9} +O(41^{10})\) |
$r_{ 7 }$ | $=$ | \( 26 + 27\cdot 41 + 36\cdot 41^{2} + 5\cdot 41^{3} + 5\cdot 41^{4} + 5\cdot 41^{5} + 9\cdot 41^{6} + 19\cdot 41^{7} + 19\cdot 41^{8} + 30\cdot 41^{9} +O(41^{10})\) |
$r_{ 8 }$ | $=$ | \( 31 + 15\cdot 41 + 39\cdot 41^{2} + 10\cdot 41^{3} + 29\cdot 41^{4} + 6\cdot 41^{5} + 20\cdot 41^{7} + 40\cdot 41^{8} + 14\cdot 41^{9} +O(41^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | |
$2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ | |
$2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ | |
$2$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |