Properties

Label 2.278784.8t5.c.a
Dimension $2$
Group $Q_8$
Conductor $278784$
Root number $1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(278784\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 11^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin field: Galois closure of 8.8.5416809268248576.2
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{2}, \sqrt{33})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 132x^{6} + 5346x^{4} - 69696x^{2} + 278784 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 10 + 25\cdot 41 + 41^{2} + 30\cdot 41^{3} + 11\cdot 41^{4} + 34\cdot 41^{5} + 40\cdot 41^{6} + 20\cdot 41^{7} + 26\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 + 13\cdot 41 + 4\cdot 41^{2} + 35\cdot 41^{3} + 35\cdot 41^{4} + 35\cdot 41^{5} + 31\cdot 41^{6} + 21\cdot 41^{7} + 21\cdot 41^{8} + 10\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 13\cdot 41 + 10\cdot 41^{2} + 15\cdot 41^{3} + 22\cdot 41^{4} + 9\cdot 41^{5} + 6\cdot 41^{6} + 25\cdot 41^{7} + 5\cdot 41^{8} + 2\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 + 31\cdot 41 + 15\cdot 41^{2} + 38\cdot 41^{3} + 30\cdot 41^{4} + 4\cdot 41^{5} + 39\cdot 41^{6} + 2\cdot 41^{7} + 17\cdot 41^{8} + 36\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 24 + 9\cdot 41 + 25\cdot 41^{2} + 2\cdot 41^{3} + 10\cdot 41^{4} + 36\cdot 41^{5} + 41^{6} + 38\cdot 41^{7} + 23\cdot 41^{8} + 4\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 + 27\cdot 41 + 30\cdot 41^{2} + 25\cdot 41^{3} + 18\cdot 41^{4} + 31\cdot 41^{5} + 34\cdot 41^{6} + 15\cdot 41^{7} + 35\cdot 41^{8} + 38\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 26 + 27\cdot 41 + 36\cdot 41^{2} + 5\cdot 41^{3} + 5\cdot 41^{4} + 5\cdot 41^{5} + 9\cdot 41^{6} + 19\cdot 41^{7} + 19\cdot 41^{8} + 30\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 31 + 15\cdot 41 + 39\cdot 41^{2} + 10\cdot 41^{3} + 29\cdot 41^{4} + 6\cdot 41^{5} + 20\cdot 41^{7} + 40\cdot 41^{8} + 14\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$