Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(278784\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 11^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $-1$ |
Artin field: | Galois closure of 8.8.5416809268248576.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{2}, \sqrt{33})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 132x^{6} + 2970x^{4} - 17424x^{2} + 17424 \) . |
The roots of $f$ are computed in $\Q_{ 167 }$ to precision 10.
Roots:
$r_{ 1 }$ | $=$ | \( 1 + 40\cdot 167 + 49\cdot 167^{2} + 38\cdot 167^{3} + 133\cdot 167^{4} + 124\cdot 167^{5} + 78\cdot 167^{6} + 37\cdot 167^{7} + 78\cdot 167^{8} + 18\cdot 167^{9} +O(167^{10})\) |
$r_{ 2 }$ | $=$ | \( 14 + 14\cdot 167 + 96\cdot 167^{2} + 125\cdot 167^{3} + 72\cdot 167^{4} + 147\cdot 167^{5} + 97\cdot 167^{7} + 117\cdot 167^{8} + 94\cdot 167^{9} +O(167^{10})\) |
$r_{ 3 }$ | $=$ | \( 53 + 95\cdot 167 + 74\cdot 167^{2} + 36\cdot 167^{3} + 92\cdot 167^{4} + 150\cdot 167^{5} + 134\cdot 167^{6} + 163\cdot 167^{7} + 68\cdot 167^{8} + 153\cdot 167^{9} +O(167^{10})\) |
$r_{ 4 }$ | $=$ | \( 74 + 118\cdot 167 + 104\cdot 167^{2} + 16\cdot 167^{3} + 43\cdot 167^{4} + 94\cdot 167^{5} + 61\cdot 167^{6} + 139\cdot 167^{7} + 135\cdot 167^{8} + 3\cdot 167^{9} +O(167^{10})\) |
$r_{ 5 }$ | $=$ | \( 93 + 48\cdot 167 + 62\cdot 167^{2} + 150\cdot 167^{3} + 123\cdot 167^{4} + 72\cdot 167^{5} + 105\cdot 167^{6} + 27\cdot 167^{7} + 31\cdot 167^{8} + 163\cdot 167^{9} +O(167^{10})\) |
$r_{ 6 }$ | $=$ | \( 114 + 71\cdot 167 + 92\cdot 167^{2} + 130\cdot 167^{3} + 74\cdot 167^{4} + 16\cdot 167^{5} + 32\cdot 167^{6} + 3\cdot 167^{7} + 98\cdot 167^{8} + 13\cdot 167^{9} +O(167^{10})\) |
$r_{ 7 }$ | $=$ | \( 153 + 152\cdot 167 + 70\cdot 167^{2} + 41\cdot 167^{3} + 94\cdot 167^{4} + 19\cdot 167^{5} + 166\cdot 167^{6} + 69\cdot 167^{7} + 49\cdot 167^{8} + 72\cdot 167^{9} +O(167^{10})\) |
$r_{ 8 }$ | $=$ | \( 166 + 126\cdot 167 + 117\cdot 167^{2} + 128\cdot 167^{3} + 33\cdot 167^{4} + 42\cdot 167^{5} + 88\cdot 167^{6} + 129\cdot 167^{7} + 88\cdot 167^{8} + 148\cdot 167^{9} +O(167^{10})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ | |
$2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ | |
$2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ | |
$2$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |