Properties

Label 2.277.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 277 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$277 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 11 x^{6} + 13 x^{5} + 32 x^{4} - 41 x^{3} - 23 x^{2} + 32 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.277.3t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{3} + x + 40 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 27\cdot 43 + 11\cdot 43^{2} + 34\cdot 43^{3} + 8\cdot 43^{4} + 8\cdot 43^{5} + 6\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 26 a^{2} + 34 a + 17 + \left(11 a^{2} + 16 a + 8\right)\cdot 43 + \left(36 a^{2} + 15 a + 6\right)\cdot 43^{2} + \left(20 a^{2} + 5 a + 15\right)\cdot 43^{3} + \left(2 a^{2} + 37 a + 37\right)\cdot 43^{4} + \left(12 a^{2} + 35 a + 2\right)\cdot 43^{5} + \left(3 a^{2} + 16 a + 32\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 7 a + 3 + \left(2 a^{2} + 15 a + 2\right)\cdot 43 + \left(5 a^{2} + 21 a + 14\right)\cdot 43^{2} + \left(16 a^{2} + 33 a + 26\right)\cdot 43^{3} + \left(20 a^{2} + 9 a + 20\right)\cdot 43^{4} + \left(22 a^{2} + 31 a + 38\right)\cdot 43^{5} + \left(12 a^{2} + 32 a + 23\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 23 + 36\cdot 43 + 16\cdot 43^{2} + 11\cdot 43^{4} + 7\cdot 43^{5} + 4\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 27 a + 6 + \left(29 a^{2} + 3 a + 26\right)\cdot 43 + \left(35 a^{2} + 6 a + 3\right)\cdot 43^{2} + \left(9 a^{2} + 8 a + 8\right)\cdot 43^{3} + \left(28 a^{2} + 30 a + 5\right)\cdot 43^{4} + \left(34 a^{2} + 8 a + 23\right)\cdot 43^{5} + \left(21 a^{2} + 38 a + 38\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 2 a + 22 + \left(29 a^{2} + 11 a + 34\right)\cdot 43 + \left(a^{2} + 6 a + 11\right)\cdot 43^{2} + \left(6 a^{2} + 4 a + 5\right)\cdot 43^{3} + \left(20 a^{2} + 39 a + 6\right)\cdot 43^{4} + \left(8 a^{2} + 18 a + 29\right)\cdot 43^{5} + \left(27 a^{2} + 36 a + 33\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 30 a + 15 + \left(5 a^{2} + 2 a + 24\right)\cdot 43 + \left(8 a^{2} + 3 a + 42\right)\cdot 43^{2} + \left(13 a^{2} + 20 a + 38\right)\cdot 43^{3} + \left(33 a^{2} + 40 a + 22\right)\cdot 43^{4} + \left(36 a^{2} + 9 a + 24\right)\cdot 43^{5} + \left(9 a^{2} + 41 a + 30\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 27 a^{2} + 29 a + 16 + \left(8 a^{2} + 36 a + 12\right)\cdot 43 + \left(42 a^{2} + 33 a + 22\right)\cdot 43^{2} + \left(19 a^{2} + 14 a\right)\cdot 43^{3} + \left(24 a^{2} + 15 a + 17\right)\cdot 43^{4} + \left(14 a^{2} + 24 a + 38\right)\cdot 43^{5} + \left(11 a^{2} + 6 a + 2\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(2,3,6)(5,7,8)$
$(1,6,4,7)(2,3,8,5)$
$(1,2,4,8)(3,6,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,5)(6,7)$$-2$
$4$$3$$(1,3,7)(4,5,6)$$\zeta_{3} + 1$
$4$$3$$(1,7,3)(4,6,5)$$-\zeta_{3}$
$6$$4$$(1,6,4,7)(2,3,8,5)$$0$
$4$$6$$(1,6,3,4,7,5)(2,8)$$\zeta_{3}$
$4$$6$$(1,5,7,4,3,6)(2,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.