# Properties

 Label 2.273.6t5.d.b Dimension $2$ Group $S_3\times C_3$ Conductor $273$ Root number not computed Indicator $0$

# Related objects

## Basic invariants

 Dimension: $2$ Group: $S_3\times C_3$ Conductor: $$273$$$$\medspace = 3 \cdot 7 \cdot 13$$ Artin stem field: Galois closure of 6.0.223587.2 Galois orbit size: $2$ Smallest permutation container: $S_3\times C_3$ Parity: odd Determinant: 1.273.6t1.c.b Projective image: $S_3$ Projective stem field: Galois closure of 3.1.24843.1

## Defining polynomial

 $f(x)$ $=$ $$x^{6} + x^{4} - 2x^{3} - 5x^{2} + 2x + 4$$ x^6 + x^4 - 2*x^3 - 5*x^2 + 2*x + 4 .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $$x^{2} + 16x + 3$$

Roots:
 $r_{ 1 }$ $=$ $$14 a + 5 + \left(11 a + 5\right)\cdot 17 + \left(5 a + 12\right)\cdot 17^{2} + \left(13 a + 7\right)\cdot 17^{3} + \left(3 a + 3\right)\cdot 17^{4} + \left(9 a + 1\right)\cdot 17^{5} +O(17^{6})$$ 14*a + 5 + (11*a + 5)*17 + (5*a + 12)*17^2 + (13*a + 7)*17^3 + (3*a + 3)*17^4 + (9*a + 1)*17^5+O(17^6) $r_{ 2 }$ $=$ $$7 a + 11 + \left(14 a + 1\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(12 a + 14\right)\cdot 17^{3} + \left(2 a + 9\right)\cdot 17^{4} + \left(15 a + 6\right)\cdot 17^{5} +O(17^{6})$$ 7*a + 11 + (14*a + 1)*17 + (16*a + 16)*17^2 + (12*a + 14)*17^3 + (2*a + 9)*17^4 + (15*a + 6)*17^5+O(17^6) $r_{ 3 }$ $=$ $$6 a + 13 + 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(16 a + 11\right)\cdot 17^{3} + 12\cdot 17^{4} + \left(5 a + 6\right)\cdot 17^{5} +O(17^{6})$$ 6*a + 13 + 17 + (3*a + 6)*17^2 + (16*a + 11)*17^3 + 12*17^4 + (5*a + 6)*17^5+O(17^6) $r_{ 4 }$ $=$ $$3 a + 2 + \left(5 a + 3\right)\cdot 17 + \left(11 a + 6\right)\cdot 17^{2} + \left(3 a + 15\right)\cdot 17^{3} + \left(13 a + 10\right)\cdot 17^{4} + \left(7 a + 6\right)\cdot 17^{5} +O(17^{6})$$ 3*a + 2 + (5*a + 3)*17 + (11*a + 6)*17^2 + (3*a + 15)*17^3 + (13*a + 10)*17^4 + (7*a + 6)*17^5+O(17^6) $r_{ 5 }$ $=$ $$11 a + 2 + \left(16 a + 13\right)\cdot 17 + \left(13 a + 8\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(16 a + 14\right)\cdot 17^{4} + \left(11 a + 10\right)\cdot 17^{5} +O(17^{6})$$ 11*a + 2 + (16*a + 13)*17 + (13*a + 8)*17^2 + 7*17^3 + (16*a + 14)*17^4 + (11*a + 10)*17^5+O(17^6) $r_{ 6 }$ $=$ $$10 a + 1 + \left(2 a + 9\right)\cdot 17 + 17^{2} + \left(4 a + 11\right)\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} + \left(a + 1\right)\cdot 17^{5} +O(17^{6})$$ 10*a + 1 + (2*a + 9)*17 + 17^2 + (4*a + 11)*17^3 + (14*a + 16)*17^4 + (a + 1)*17^5+O(17^6)

## Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

 Cycle notation $(4,5,6)$ $(1,3,2)(4,6,5)$ $(1,4)(2,6)(3,5)$

## Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 6 }$ Character value $1$ $1$ $()$ $2$ $3$ $2$ $(1,4)(2,6)(3,5)$ $0$ $1$ $3$ $(1,3,2)(4,5,6)$ $-2 \zeta_{3} - 2$ $1$ $3$ $(1,2,3)(4,6,5)$ $2 \zeta_{3}$ $2$ $3$ $(1,3,2)(4,6,5)$ $-1$ $2$ $3$ $(4,5,6)$ $-\zeta_{3}$ $2$ $3$ $(4,6,5)$ $\zeta_{3} + 1$ $3$ $6$ $(1,4,3,5,2,6)$ $0$ $3$ $6$ $(1,6,2,5,3,4)$ $0$

The blue line marks the conjugacy class containing complex conjugation.