Properties

Label 2.273.6t5.d.b
Dimension $2$
Group $S_3\times C_3$
Conductor $273$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(273\)\(\medspace = 3 \cdot 7 \cdot 13 \)
Artin stem field: 6.0.223587.2
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.273.6t1.c.b
Projective image: $S_3$
Projective stem field: 3.1.24843.1

Defining polynomial

$f(x)$$=$\(x^{6} + x^{4} - 2 x^{3} - 5 x^{2} + 2 x + 4\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{2} + 16 x + 3\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 14 a + 5 + \left(11 a + 5\right)\cdot 17 + \left(5 a + 12\right)\cdot 17^{2} + \left(13 a + 7\right)\cdot 17^{3} + \left(3 a + 3\right)\cdot 17^{4} + \left(9 a + 1\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 11 + \left(14 a + 1\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(12 a + 14\right)\cdot 17^{3} + \left(2 a + 9\right)\cdot 17^{4} + \left(15 a + 6\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 13 + 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(16 a + 11\right)\cdot 17^{3} + 12\cdot 17^{4} + \left(5 a + 6\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 3 a + 2 + \left(5 a + 3\right)\cdot 17 + \left(11 a + 6\right)\cdot 17^{2} + \left(3 a + 15\right)\cdot 17^{3} + \left(13 a + 10\right)\cdot 17^{4} + \left(7 a + 6\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 11 a + 2 + \left(16 a + 13\right)\cdot 17 + \left(13 a + 8\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(16 a + 14\right)\cdot 17^{4} + \left(11 a + 10\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 10 a + 1 + \left(2 a + 9\right)\cdot 17 + 17^{2} + \left(4 a + 11\right)\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} + \left(a + 1\right)\cdot 17^{5} +O(17^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,3,2)(4,6,5)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$1$$3$$(1,3,2)(4,5,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,3)(4,6,5)$$2 \zeta_{3}$
$2$$3$$(1,3,2)(4,6,5)$$-1$
$2$$3$$(4,5,6)$$-\zeta_{3}$
$2$$3$$(4,6,5)$$\zeta_{3} + 1$
$3$$6$$(1,4,3,5,2,6)$$0$
$3$$6$$(1,6,2,5,3,4)$$0$

The blue line marks the conjugacy class containing complex conjugation.