Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.225194688.10 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.8.2t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.2888.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} - 12x^{4} - 27x^{3} + 176x^{2} + 91x + 49 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{2} + 12x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 + 12\cdot 13 + 11\cdot 13^{2} + 3\cdot 13^{3} + 9\cdot 13^{4} + 11\cdot 13^{5} + 10\cdot 13^{6} + 9\cdot 13^{7} + 8\cdot 13^{8} +O(13^{9})\)
$r_{ 2 }$ |
$=$ |
\( 2 a + 3 + 2\cdot 13 + \left(3 a + 2\right)\cdot 13^{2} + \left(9 a + 3\right)\cdot 13^{3} + \left(3 a + 7\right)\cdot 13^{4} + \left(4 a + 5\right)\cdot 13^{5} + \left(5 a + 11\right)\cdot 13^{6} + \left(7 a + 4\right)\cdot 13^{7} + \left(12 a + 8\right)\cdot 13^{8} +O(13^{9})\)
| $r_{ 3 }$ |
$=$ |
\( 6 + 6\cdot 13 + 12\cdot 13^{2} + 12\cdot 13^{3} + 5\cdot 13^{4} + 6\cdot 13^{5} + 4\cdot 13^{6} + 8\cdot 13^{7} + 9\cdot 13^{8} +O(13^{9})\)
| $r_{ 4 }$ |
$=$ |
\( 11 a + 5 + 12 a\cdot 13 + \left(9 a + 5\right)\cdot 13^{2} + \left(3 a + 9\right)\cdot 13^{3} + \left(9 a + 1\right)\cdot 13^{4} + \left(8 a + 6\right)\cdot 13^{5} + \left(7 a + 12\right)\cdot 13^{6} + \left(5 a + 6\right)\cdot 13^{7} +O(13^{9})\)
| $r_{ 5 }$ |
$=$ |
\( 6 a + 9 + 9 a\cdot 13 + \left(9 a + 10\right)\cdot 13^{2} + \left(a + 8\right)\cdot 13^{3} + \left(3 a + 6\right)\cdot 13^{4} + 11 a\cdot 13^{5} + \left(2 a + 4\right)\cdot 13^{6} + 11 a\cdot 13^{7} + \left(2 a + 10\right)\cdot 13^{8} +O(13^{9})\)
| $r_{ 6 }$ |
$=$ |
\( 7 a + 2 + \left(3 a + 4\right)\cdot 13 + \left(3 a + 10\right)\cdot 13^{2} + 11 a\cdot 13^{3} + \left(9 a + 8\right)\cdot 13^{4} + \left(a + 8\right)\cdot 13^{5} + \left(10 a + 8\right)\cdot 13^{6} + \left(a + 8\right)\cdot 13^{7} + \left(10 a + 1\right)\cdot 13^{8} +O(13^{9})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-2$ |
$3$ | $2$ | $(2,4)(5,6)$ | $0$ |
$3$ | $2$ | $(1,3)(2,6)(4,5)$ | $0$ |
$2$ | $3$ | $(1,2,4)(3,5,6)$ | $-1$ |
$2$ | $6$ | $(1,5,4,3,2,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.