Properties

Label 2.255025.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $255025$
Root number $1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(255025\)\(\medspace = 5^{2} \cdot 101^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin field: Galois closure of 8.8.16586252353140625.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{101})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} - 164x^{6} + 139x^{5} + 6881x^{4} - 11125x^{3} - 63850x^{2} + 149875x - 56125 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 29\cdot 71 + 47\cdot 71^{2} + 69\cdot 71^{3} + 27\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 + 51\cdot 71 + 38\cdot 71^{2} + 21\cdot 71^{3} + 67\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 17 + 43\cdot 71 + 19\cdot 71^{2} + 40\cdot 71^{3} + 47\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 25 + 70\cdot 71 + 14\cdot 71^{2} + 41\cdot 71^{3} + 22\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 28 + 2\cdot 71 + 11\cdot 71^{2} + 46\cdot 71^{3} + 48\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 40 + 61\cdot 71 + 23\cdot 71^{2} + 32\cdot 71^{3} + 43\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 41 + 8\cdot 71 + 54\cdot 71^{2} + 49\cdot 71^{3} + 39\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 52 + 17\cdot 71 + 3\cdot 71^{2} + 54\cdot 71^{3} + 57\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,8,7)(2,4,5,3)$
$(1,8)(2,5)(3,4)(6,7)$
$(1,4,8,3)(2,7,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,4)(6,7)$$-2$
$2$$4$$(1,6,8,7)(2,4,5,3)$$0$
$2$$4$$(1,4,8,3)(2,7,5,6)$$0$
$2$$4$$(1,2,8,5)(3,7,4,6)$$0$